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 Abstract: Background: Acquired Immunodeficiency Syndrome (AIDS) is a large-scale pandemic 

caused by the infection of Human Immunodeficiency Virus (HIV). This virus infects over 40 million 

people worldwide. In the search for pandemic control, many drug resistance tests have been performed, 

resulting in the generation of large genomic data amount. These data are stored in biological databases, 

increasing on a daily basis. However, the majority of genomic data lacks important information, 

regarding virus subtype distribution, in the primary databases, e.g. GenBank. 

Objective: A novel software tool to obtain, index and analyze highly mutational virus data, such as all 

HIV-1 sequence data from GenBank. 

Method: The software aligns all sequences containing a complete genome (HXB2) for mapping 

purposes. In addition, all sequences with subtype references are locally aligned to classify all data into 

genotypic niches. 

Results: Our results detail the prevalence of every subtype from a global HIV-1 sequence perspective, 

highlighting increases in the number of sequences related to recombinant subtypes. We were also able 

to identify country-based distribution of sequences according to geographical data distribution. All data 

were analyzed on a reasonable timescale, particularly in comparison to classic methods. 

Conclusion: Our software represents an important contribution to HIV molecular epidemiology and 

offers a technique to rapidly classify new sequences, in addition to providing insight about sequence 

coverage density, subtype and country distribution. This data, together with cross-referencing, will aid 

in the generation of a novel, comprehensive and updated HIV-1 database. 
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1. INTRODUCTION 

Viruses-associated diseases are a serious public health 
problem worldwide. Acquired Immunodeficiency Syndrome 
(AIDS) has no cure and affects people of almost all the 
countries [1]. Human Immunodeficiency Virus (HIV) is the 
associated etiological agent of AIDS and the World Health 
Organization (WHO) estimates that HIV infects over than 40 
million people worldwide with 2.3 million new cases every 
year [2]. There are two types of HIV, however, the type 1  
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(HIV-1) is the major associated with AIDS pandemic [3-5]. 
The HIV-1 has four main groups; M, N, O and P [6]. Related 
to over 33 million infections around the world, strains from 
group M are the most prevalent in the pandemic [6]. Due the 
virus reproduction speed, recombination and the high 
mutation rate show high genetic variability with 9 subtypes 
and 61 recombinant, corresponding to 70 variants [3, 6]. This 
genetic variability shows notorious influence in the disease 
progression, because different genotypes could present 
different cellular tropism, viral replication and antiretroviral 
drug susceptibility [7, 8]. 

During the viral life cycle, several viral proteins interact 
with the host proteins [9]. These proteins are encoded by two 
major gene sets; structural genes, such as gag, pol and env 
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and regulatory genes, such as Vif, Vpr, Vpu, Nef [5]. In the 
last thirty years, these proteins have been used as targets to 
reduce the viral replication and to develop new drugs [8]. 
However, the viral resistance is still observed in clinical 
trials, being the key problem of drug development [10]. The 
virus adaptation to selective pressure imposed by drugs can 
reduce viral titer. Thus the resistant strain arises, able to 
avoid the pressure, prevails as the resistant strain starts a new 
infection scenario [11]. 

Over the past two decades, the following two strategies 
have often been used to find drugs against AIDS. One target 
is the HIV reverse transcriptase [12-17]; the other is the 
protease inhibitors [18-20] based on the distorted key theory 
[19, 21, 22]. Thus, developments in the new approach 
offering such treatments and vaccine acknowledgment about 
viral distribution, dynamics, infection, prevalence and 
genomics are required [23]. The mutagenic potential and 
diverse antigen/epitope assortment are serious challenges on 
the vaccine development, control and cure [24, 25]. To 
improve the knowledge, new information regarding host and 
virus is needed [26]. 

Therefore, studies with primary databases such as 
GenBank (http://www.ncbi.nlm.nih.gov/genbank) remain 
important. The GenBank sequence database is one of the 
biggest nucleotide databases [27]. This database stores over 
154 billion nucleotide bases, corresponding to 167 million 
sequences, which is also a part of an international 
collaboration between the National Center for Biotechnology 
Information (NCBI), the European Molecular Biology 
Laboratory (EMBL) Data Library from the European 
Bioinformatics Institute (EBI) and the DNA Data Bank of 
Japan (DDBJ) [27]. There are over 580,000 HIV-1 
sequences available on this integrated database. The HIV-1 
sequences deposited in the GenBank represent only a small 
genome fragment usually as a part of a single genotype [23, 
28-33]. Thus, to get more tangible information regarding 
HIV-1, more extensive analysis is necessary. The primary 
information stored in the databases could be used to 
understand and predict events or variables relevant to 
epidemic control and cure development [5]. 

However, some of the available variables, such as the 
viral subtype and genomic location are not present on the 
GenBank database. To obtain these information, it is 
necessary reanalyze the primary data. The golden standard 
for subtyping classification is the phylogeny analysis [34, 
35]. Although broadly used, this technique is optimized to 
analyze only small and local databases. Moreover, 
phylogeny requires more computational resources to perform 
subtype classification analysis. 

Thus, many scientists use heuristic methods to expedite 
complex analysis. However, heuristic approaches lack 
precision and are directly dependent on the database 
confirmation [36]. Herein, we developed an integrated 
system to obtain index and classified all nucleotide sequence 
from the GenBank. The software used optimal alignment 
algorithm to map and subtype sequences by comparing them 
to the subtype of reference sequences. Nonetheless, to reduce 
the amount of alignments, a pre analysis was performed. At 
this point, all recombinant subtypes were grouped for 
recombination derivation. 

2. MATERIALS AND METHOD 

2.1. Sequence Acquisition and Storage 

The National Center for Biotechnology Information 
(NCBI) offers many tools for sequence management. One of 
these is the Global Query Cross-Database Search System 
(Entrez). Entrez offers a series of e-tools over Simple Object 
Access Protocol (SOAP), which employs a data transfer 
protocol based on eXtensive Markup Language (XML) and 
Socket connections. These tools are used to query all 38 
Entrez databases and search for abstracts, gene information, 
taxonomy, 3D structures and nucleotide sequences [37]. 
Entrez employs the ESearch e-tool to select the database to 
be accessed, as well as the list of nucleotide sequence IDs, 
obtained by EFetch. The data retrieval system was developed 
to facilitate access to several databases within NCBI, 
including GenBank [38]. 

Regarding the Nucleotide database, the number of 
downloadable sequences is limited to protect the server when 
multiple requests are sent simultaneously. Limits are applied 
to the EFetch tool and up to 200 sequences can be 
downloaded at once [39]. If the query contains more than 
200 sequences, the POST method must be used. This method 
employs an http (Hypertext Transfer Protocol) or https 
(Secure Hypertext Transfer Protocol) connection, 
transferring data directly as a stream. However, the POST 
method limits the connection request frequency and blocks 
the user IP if the maximum number of connections is 
reached. Thus, retrieving large amount of sequence data 
from the GenBank represents a complex task. 

The development of the NSeek acquiring-tool was based 
on the limits imposed by each NCBI service. The first step in 
acquiring a nucleotide sequence is to acquire the individual 
identifiers (ID) utilizing the ESearh tool. However, if the 
local database contains some of the target sequences, it is 
unnecessary to download all of the IDs. Thus, the local 
database ID sequence list is compared to those retrieved 
from GenBank. Hence, a list with non-downloaded IDs is 
generated and the sequences are downloaded in the subsets 
containing 200 IDs each. Each sublist is then processed 
within a different thread, enabling simultaneous downloads. 
If one sequence download via SOAP method fails, NSeek 
automatically starts the download via the POST method. All 
the repeated download requests are delayed by 30 minutes, 
thereby avoiding NCBI service overload. All threads are 
synchronized with each other and the task manager 
reschedules the failed download, effectively avoiding the 
downloading process interruption. 

After downloading all sequences the modulation to local 
database process starts. A scheduled task is created to 
demodulate each sequence and its features simultaneously, 
avoiding the download process impairing. When this task is 
finished, the sequence is modulated and then stored, with its 
features and cross-reference information, in the local 
database. Nevertheless, if errors occur in downloading or 
modulation process that cannot be quickly solved, a failsafe 
process is needed. Thus, we developed a manual import 
module. This module allows the user to import previously-
downloaded GenBank (gb) files from the local database. 
However, some multi-sequence gb files are large size (e.g. 
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30 GB). These large files could disrupt the sequence of the 
modulation process. Addressing this issue, a gradual reading 
algorithm was developed to reduce memory allocation in the 
importation process. The algorithm reads line-by-line and 
applies regular expression identification. Both single and 
multiple sequence files can be modulated by NSeek. In 
summary, these novel approaches allow the download of 
GenBank stored-sequence and its indexing and insertion in 
the local databases, manually or automatically. 

2.2. Sequence Mapping 

Thus, we developed a mapping module to map all the 
sequences regarding HIV with its reference genome. The 
mapping process is based on a modified Needleman-Wusch 
algorithm, with the Gotoh affine gap penalty implementation 
for the alignment. This mathematical based algorithm 
performs a sequence similarity maximization, and uses a 
non-heuristic dynamic programming approach to infer the 
best alignment possible between the sequences [40]. 
However, utilization of non-heuristic algorithm is considered 
as the time and resource consuming process. 

Therefore, several new technologies were used to better 
address this problem. The algorithm was modified so that the 
resource consumption could be reduced. For this purpose, we 
replaced the well-known Needleman matrix by two dynamic 
arrays. This way, the matrix was assembled and traced back 
simultaneously, reducing the alignment time and the use of 
resource. With the limited use of resource, more alignments 
could be made at the same time thus, overall decreasing the 
time exponentially. Thereat, a density map was created 
regarding the global distribution of HIV sequences. Within 
this map, all the fragments were represented within their 
limits. This map can also help to identify epitope density in 

the database, increasing researchers’ datasets with more 
variable sequences and more concrete information in a short 
period of time. 

2.3. Sequence Subtyping 

A module of the genotype of all HIV-1 sequences available 
in the GenBank was developed to address the lack of 
information about sequence distribution. Thus, the module 
performed a non-heuristic alignment based on the modified 
Smith & Waterman algorithm with Gotoh affine gap penalty 
implementation. All modifications were performed to reduce 
time and resource consumption, optimizing the genotyping 
process. 

The HIV genotyping process requires the comparison of 
all query sequences to a reference set. This corresponds to 
over 40 million alignments. To avoid such extensive 
comparison, we performed a sequence grouping based on 
recombination derivation. Thus, all the sub-subtypes (the 
recombinants) were grouped and linked to the "pure" 
subtype (the group M subtypes) showing its genomic 
characteristics. The sequence was then aligned to pure 
subtypes. Then, the alignment with the chained sub-
subtypes, that showed high similarity in the previous pure 
alignment, was performed. Therefore, over 60% needed 
alignments were reduced, with no further precision losses. 
The subtype process is illustrated in Fig. 1. 

Furthermore, only similar measurement was performed 
by the algorithm to reduce the resource usage. The trace back 
and matrix calculation were removed, reducing 70% time 
and memory allocation. Moreover, after the comparison, the 
similar matrix was removed from the algorithm, reducing the 
memory consumption. After that, two dynamic arrays were 

 

Fig. (1). Sequence subtyping flow chart. 
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used in the measurement of similar score. The last line and 
the actual line were needed to perform this admeasurement. 
The performance enhancement allowed several simultaneous 
alignments execution. The number of simultaneous processes 
depends on the availability hardware resource. 

A task manager was developed for supervising task 
creation, task pool management and resource consumption.In 
this way, the alignment process was monitored and 
enhanced. The manager read up to 200 sequences and 
created tasks guided by the resource analysis. Each task held 
the query and all chained reference sequences. First, the 
query was aligned to all “pure” reference sequences and the 
top-3 alignments with the best similarity scores were moved 
to the next step. After this, the query was aligned to the 
reference chained sequences associated to the top-3 
alignment. The manager scheduled the writing process right 
after the termination of the reading process. In this way, the 
processing time was reduced. 

2.3.1. Subtyping Validation 

The validation was performed for comparing the classical 
approach to the grouping algorithm. The classical approach 
performed all reference set comparisons while the grouping 
algorithm followed the reference chain. In both the approaches, 
the alignment algorithm was non-heuristic. Thus, the results of 
subtyping process were compared using a confusion matrix. 

3. RESULTS AND DISCUSSIONS 

The tool was used to analyze the massive data in a 
reliable time with a high precision level. Currently, there are 
no subtyping tools available to analyze whole HIV 
sequences present in the GenBank with good performance 
and accuracy. Moreover, the accuracy did not differ between 
the classical and the optimized subtyping approach (data not 
shown). However, the optimized tool reduced 50% of the 
processing time as it took 1 day and 7 hours with the same 
accuracy, while the classical approach took 2 days and 10 
hours for subtyping. Despite the phylogenetic process (Gold 
standard) is best applied in small datasets, its application is a 
time consuming process [34, 35], because its use in large 
datasets is a complex and almost unfeasible task. Thus, the 
reliable genotyping tool with standard genotyping 
procedures is essential to organism surveillance and further 
vaccine development [41]. 

Despite massive sequences related to HIV are deposited in 
the GenBank, the majority does not represent significant 
information individually, because these sequences are mainly 
partial gene sequences (Fig. 2). While the whole genome has 
9,500 base pairs and the average sequence length in the database 
is 1,005 base pairs. The ordered data according to the whole 
genome allows the identification of specific genomic areas 
without intense evaluation. Thus, this identification could drive 
new genomic and molecular epidemiology studies on the HIV. 

The mapping process identified the beginning and end of 
the sequence according to the reference. Thereby, we were 
able to identify partial and total coverage for each HIV-1 
gene (Fig. 3). The results showed a high frequency of partial 
coverage of structural genes (gag, pol and env) compared to 
the total coverage, with a corresponding density of 66.41%. 
This suggests a low representation bias of the nonstructural 
genes in the dataset. The pol gene was the most prevalent in 
GenBank, reaching 47.8% of all HIV-1 sequences (Fig. 3). 
However, no unrepresented region was observed. The lowest 
coverage region was 5’ LTR with 1.44% density. 

Regarding subtypes prevalence, the B was the most 
observed, with 45.96% prevalence, followed by C (2.93%) 
and A1 (2.46%) subtypes, as shown in Fig. 4. Furthermore, 
two HIV-1 strains can hybridize, generating a new 
circulating virus with a mosaic genome [42, 43]. It occurs 
when different subtypes infect the same cell. The 
recombination process gives rise a double subtype strain 
(resulting from 2 subtypes coinfection) or even more 
complex strains (three or more subtype coinfection). These 
processes make the disease control and surveillance difficult 
worldwide. 

Each recombinant presents particular characteristics and 
dynamics. Thus, with the analysis, we were able to identify 
the HIV-1 subtype prevalence as shown in Fig. 5. Moreover, 
there were total 47.21%recombinant sequences in the 
database (Fig. 4). The most prevalent recombinant was the 
CRF_03AB with 13.61%, followed by CRF01_AE with 
12.67% (Fig. 5). 

The graphic representation offers a novel intuitive 
perspective and useful insights regarding biological systems. 
Several graphic approaches have been applied successfully 
in other biological issues, such as enzyme-catalyzed 
reactions [44-47] slow conformational change [48], protein 
folding kinetics and folding rates [49], the inhibition of HIV-

 

Fig. (2). HIV-1 sequence length distribution on GenBank database considering all sequences available. 
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Fig. (3). Sequence coverage of structural and regulatory genes. 

 

Fig. (4). Pure and Recombinant Subtype Distribution. 
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Fig. (5). Recombinant sequence distribution. 
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subtypes, we were able to create an expansion based on recombination derivation of all sequences on database and its subtypes. This 

distribution expansion can be addressed in Fig. 5. 
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1 reverse transcriptase [12-14], non-steady drug metabolism 
systems [50], hepatitis B viral infections [51], HBV virus 
gene missense mutation [52], the evolution of biological 
sequences [53] and the use of wenxiang graphs [54] applied 
to protein-protein interactions [55, 56].In this study, we 
applied complex network modeling to offer an enhanced 
perspective regarding the derivation of variability in HIV-1 
(Fig. 6). This node network was created using the observed 
subtype distribution and the Yifan Hu method of 
mathematical modeling. This graphic approach highlighted 
close relationship between some pure recombinants. These 
insights allowed the development of a subtyping derivation 
strategy, dramatically reducing the overall alignment time 
required. 

After classification, each sequence was indexed in the 
database, allowing filtered searches and easy individual 
dataset creation. We classified the recombinants as double” 
sub-subtypes and “complex” sub-subtypes. The double 
represents two circular virus strain originated sequences and 
3 complex or others. This provided an insight into the 
comprehensive genomic evaluation and a virus mutational 
dynamics, assisting in the prevalence studies. Regarding 
virus adaptation, the primary challenge in the vaccine and 
drug development [57], the databases assist in escape 
mutation surveillance. The virus interaction with the host 
immune system occurs when CD8+ T-cells recognize HIV-1 
antigens. These epitopes have 8 to 11 amino acid length and 
bounds to MHC class I molecules [58]. 

However, when the escape mutations takes place within 
an epitope coding region, the binding process does not occur. 
This impairs the immune response leading virus persistence. 
Our system allows the user to evaluate the fragmented 
sequences in a complete genome context. This facilitates the 
studies on epitope and mutation, because all the sequences 
are related to HXB2 reference genome. This standardization 
is crucial to sequence-feature comparison 

In summary, the alignment process for a large amount of 
sequences is a complex computational task. This is 
associated to viral adaptation [24]. The HIV-1 evades the 
immune system by using diverse ways such as, external 
glycoprotein, heavy glycosylation, escape mutations and 
recombination [59]. These viral features dramatically 
increase the complexity of alignment and comparison 
process making the analysis of all sequences deposited in 
database an intricate task. Thus, the analysis was applied to 
all 582,678 sequences available in the GenBank using a 
single server. The subtyping process took 1 day and 7 hours, 
and the original serial approach was suspended (after a 6-day 
runtime) and was estimated to last 97 years. Both the 
analyses were performed using a dual hex core Intel Xeon® 
Processor X5650 processor containing 16 individual cores, 
32GB RAM running Ubuntu 14.04 O.S. 

4. CONCLUSION 

The recent development of various genome analysis tools 
has brought about significant progress [60-65]. These tools 
have been successfully used in the genome analysis [61, 66-
78]. Thus, interesting outcomes will be obtained by using 
these state-of-the-art tools on HIV genome. The recent 
progress regarding the role of HIV-1 proteins, specifically 

env genes [79] and the role during the infection, 
immunogenicity and host interaction is taken into 
consideration [80, 81]. However, we presented a new user-
friendly software for massive data analysis. The software 
was optimized to high mutational viruses sequence analysis, 
such HCV and HIV, and this analysis was performed in a 
reliable time. 

Moreover, the results showed a new tendency regarding 
recombinant distribution and highlighted the genome 
fragmentation in the database (gene coverage bias), with the 
structural genes being more represented. Thus, this analysis 
of all the sequences from HIV provides new basis for 
epidemics, subtypes and fragmentation distribution. 
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