

# B-cell epitopes of antigenic proteins in *Leishmania infantum*: an *in silico* analysis

L. M. ASSIS,<sup>1,2</sup> J. R. SOUSA,<sup>3</sup> N. F. S. PINTO,<sup>4</sup> A. A. SILVA,<sup>5</sup> A. F. M. VAZ,<sup>6</sup> P. P. ANDRADE,<sup>7</sup> E. M. CARVALHO<sup>8,9</sup> & M. A. DE MELO<sup>6</sup>

<sup>1</sup>Graduate Program in Medicine and Health, Professor Edgard Santos University Hospital Complex, Federal University of Bahia (Universidade Federal da Bahia-UFBA), Salvador, Brazil, <sup>2</sup>Academic Nursing Unit, Federal University of Campina Grande (Universidade Federal de Campina Grande)-UFCG, Cajazeiras, Brazil, <sup>3</sup>Santa Maria College (Faculdade Santa Maria-FSM), Cajazeiras, Brazil, <sup>4</sup>Graduate Program in Veterinary Medicine, Veterinary Medicine Academic Unit, Federal University of Campina Grande-UFCG, Patos, Brazil, <sup>5</sup>Academic Unit of Exact and Natural Sciences, Federal University of Campina Grande, Cajazeiras, Brazil, <sup>6</sup>Academic Unit of Veterinary Medicine, Federal University of Campina Grande-UFCG, Patos, Brazil, <sup>7</sup>Department of Genetics, Federal University of Pernambuco-UFPE, Recife, Brazil, <sup>8</sup>Graduate Program in Medicine and Health, Immunology Service, Professor Edgard Santos University Hospital Complex, Federal University of Bahia, Salvador, Brazil, <sup>9</sup>National Institute of Science and Technology of Tropical Diseases (Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais) - INCT DT(CNPq/MCT), Salvador, Brazil

#### SUMMARY

Serodiagnosis of visceral leishmaniasis is often hindered by cross-reactions to other parasitic diseases. Identifying specific B-cell epitopes in proteins is therefore important for immunodiagnostics, as well as for disease control by vaccines. This study aimed to identify linear and conformational B-cell epitopes and to evaluate the secondary structure of antigen proteins in Leishmania infantum using in silico analysis. Linear epitopes were predicted using the Immune Epitope Database and Analysis Resource (IEDB), BepiPred and BcePred programs. The conformational B-cell epitopes were identified using the CBTOPE server. The combination of the predictions using IEDB, BepiPred and BcePred generated 148 linear epitopes from the calpain-like cysteine peptidase (CP), thiol-dependent reductase 1 (TDR1) and HSP70 proteins. In total, 164 conformational epitopes were predicted, mostly located in the linear epitope region. The predicted epitopes are located in  $\alpha$  helix and random coil regions in the thiol-dependent reductase 1 and HSP70 proteins. New linear and conformational B-cell epitopes of L. infantum proteins were identified in silico, and the prediction using various programs ensures greater accuracy of the results, as suggested by confirmation of previously identified HSP70 epitopes.

Correspondence: Marcia Almeida de Melo, Academic Unit of Veterinary Medicine, Federal University of Campina Grande-UFCG, Av. Universitária, s/n, Bairro Santa Cecília, Patos, Paraíba CEP: 58. 708-110, Brazil (e-mail: marcia.melo@pq.cnpq.br). Disclosures: None. Received: 21 July 2013 Accepted for publication: 26 February 2014 *Keywords* bioinformatics, diagnosis, kala-azar, synthetic biology, vaccine

# INTRODUCTION

Identifying antigenic/immunogenic regions in protein antigens is important for the diagnosis of infectious diseases as well as for vaccine development. By contrast, the production and use of native antigens for diagnostic tests and vaccine assays are frequently hindered by variation in species and lead to high costs for purification, especially in producing vaccines (1). An alternative to resolve these limitations is the use of synthetic peptides made from epitopes identified with computational tools for predicting antigenic and/or immunogenic peptides (2–4).

The first method for predicting linear epitopes was based on the properties of the amino acids (5), assuming that hydrophilic regions of the proteins are predominantly located on the surface and thus are potentially antigenic. Subsequently, Parker *et al.* (6) used the modified hydrophilic scale and observed improved epitope prediction compared with the method of Hopp and Woods (5). Other studies predicting B-cell epitopes have been published based on the physicochemical properties of amino acids, such as flexibility (7) and solvent accessibility (8). Kolaskar and Tongaonkar (9) used the antigenicity parameter to predict antigenic sites in proteins and observed approximately 75% accuracy. Subsequently, Pellequer *et al.* (10) found a correlation between antigenic sites and the prediction of turns in the protein. A comparison of 12 scales applied to 85 linear epitopes identified in 14 proteins demonstrated that most of the scales had 50–62% correct predictions (11); the B-turn scale had the best performance, correctly predicting 70% of the known epitopes (10). Bce-Pred (12) combines seven different physicochemical scales of the existing scalar prediction methods that can be used individually or in combination and has one of the best accuracy rates presently reported.

In the last decade, more sophisticated methods based on machine-learning models were developed in an attempt to improve epitope prediction accuracy (13). The BepiPred program (14) is based on combining the hidden Markov model with two scalar methods: Parkers hydrophilicity scale (6) and Levitts secondary structure scale (15). The program demonstrated that the performance of the scales combined is better than the performance of only a single scale. Currently, the BepiPred method is incorporated into the IEDB program (Immune Epitope Database and Analysis Resource) (16), which is a technique that has been increasingly used for epitope prediction. On the other hand, the ABCpred predictive tool uses an artificial neural network and, when applied, yields 66% maximum accuracy (17). New in silico methodologies for predicting B-cell epitopes were also developed using supported vector machine (SVM) models, a class of supervised machinelearning methods used for classification and regression. Tools employing these methodologies include BCPred (18), COBEpro (19) and, more recently, sequence-based methods - CBTope (20) and BEST (21). The CBTope predictor was proposed for predicting conformational epitopes and uses multiple propensities with 86.59% accuracy.

The first step in designing synthetic peptides for application to vaccines and disease immunodiagnostics is to identify potential epitopes. Several studies have been performed using synthetic peptides that mimic epitopes for diagnosing infectious and parasitic diseases (22). Combining methods and analysis of results can reduce the number of potentially useful epitopes and consequently optimize the resources and effort in identifying effectively useful epitopes *in vitro* and *in vivo*. This study describes and analyses the prediction of B-cell epitopes on antigenic proteins of *Leishmania infantum* using bioinformatics tools.

#### MATERIALS AND METHODS

The genes corresponding to the proteins analysed in this study were identified by immunoscreening of a complementary DNA (cDNA) library from *Leishmania chagasi*, employing human serum with visceral leishmaniasis. Partial nucleotide sequences were obtained by sequencing the corresponding cDNA. Three *L. infantum* proteins were analysed as follows: putative calpain-like cysteine

peptidase (CP) (GI: 146090707), thiol-dependent reductase 1 (TDR1) (GI: 146097469) and 70 kDa – HSP70 heatshock protein (GI: 758136·1) with 6168, 450 and 653 amino acids (aa), respectively. The HSP70 protein was used as a control for predicting the presence of experimentally identified immunodominant epitopes (23).

For determining linear epitopes, the L. infantum protein sequences were submitted to the IEDB (24), Bepi-Pred (14) and BcePred web servers (12). The methods of predicting B-cell epitopes that are common for the IEDB and BcePred programs used in this study were based on the following scales: hydrophilicity (6), flexibility (7) and solvent accessibility (8). The linear B-cell epitopes that were partially or entirely common to scalar hydrophilicity, flexibility and accessibility methods of the IEDB and BcePred were compared with the BepiPred results. The linear epitopes common to the three programs were selected to determine the frequency of amino acid residues. The CBTope program was used to predict conformational B-cell epitopes (20). The default settings were applied to all the tools used. The secondary structure of the proteins was predicted using the PHD server (http://npsa-pbil.ibcp.fr/cgi-bin/npsa\_automat. pl?page=/NPSA/npsa\_phd.html).

### **RESULTS AND DISCUSSION**

The IEDB, BcePred and BepiPred programs identified 130, 103 and 437 linear epitopes, respectively, obtained from the three proteins CP, TDR1 and HSP70. Using the IEDB, BepiPred and BcePred programs, 357 linear epitopes were predicted for the CP protein, of which 130 were partially or entirely common to the three programs (Table 3). Of the 19 epitopes of the TDR1 protein predicted using the three methods, only four were common to all programs. Of the 37 epitopes predicted for HSP70, 14 were common to all three programs (Table 1).

Some of the predicted epitopes were either previously described as B-cell epitopes or contained in antigenic regions of *L. infantum* HSP70 and supported the use of our *in silico* strategy for the identification of B-cell epitopes. Indeed, the Ph5 epitope (aa 241–261) has all the amino acid residues of the H17 epitope (FFTEEFKRKNKGKN-LASSHR) identified as species-specific by (23). The Ph9 and Ph10 epitopes have the partial sequence of amino acid residues of the H35 and H36 epitopes that were also immunogenic and identified by the same author (Table 1). The Ph2, Ph4, Ph7 and Ph8 epitopes were not indicated as immunogenic in the assay by (23).

In the CBTope program, 143, 11 and 10 conformational epitope regions were predicted for the CP (Table 4), TDR1 (Table 2) and HSP70 proteins (Table 2). Of the 143

| Programs           | Position | Sequence                                   | Linear<br>epitope |
|--------------------|----------|--------------------------------------------|-------------------|
| 1;2;3 <sup>a</sup> | 39–54    | REEMPQWYKQINPRET                           | Pt1               |
| 1;2;3              | 55-70    | VPTLEVGNADKRFMFE                           | Pt2               |
| 1;2;3              | 195–214  | AAQRASVRETSPTAAQCIEN                       | Pt3               |
| 1;2;3              | 310-324  | ALVPRGDAEKEYEVG                            | Pt4               |
| 1;2;3              | 28-46    | IIANDQGNRTTPSYVAFTD                        | Ph1               |
| 1;2;3              | 105-121  | SVQYRGEEKTFTPEEIS                          | Ph2               |
| 1;2;3              | 149–165  | AYFNDSQRQATKDAGTI                          | Ph3               |
| 1;2;3              | 183–197  | YGLDKGDDGKERNVL                            | Ph4               |
| 1;2;3              | 241–261  | <b>FFTEEFKRKNKGKNLASSHR</b> A <sup>b</sup> | Ph5               |
| 1;2;3              | 323–335  | LQDAKMDKRSVHD                              | Ph6               |
| 1;2;3              | 380-393  | FILTGGKSKQTEGL                             | Ph7               |
| 1;2;3              | 488–506  | LNVSAEEKGTGKRNQITIT                        | Ph8               |
| 1;2;3              | 504-524  | TITNDKG <b>RLSKDEIERMVNDA</b> <sup>°</sup> | Ph9               |
| 1;2;3              | 525-545  | MKYEEDDKAQRDRVEAKNGLE <sup>d</sup>         | Ph10              |
| 1;2;3              | 546–564  | NYAYSMKNTLSDSNVSGKL                        | Ph11              |
| 1;2;3              | 558-576  | SNVSGKLVSGKLEDSDKATLNKEI                   | Ph12              |
| 1;2;3              | 581-599  | EWLSSNQEAAKEEYEHKQK                        | Ph13              |
| 1;2;3              | 587-605  | QEAAKEEYEHKQKELESVC                        | Ph14              |

| Table 1 | Linear epitopes | s of the TE | OR1 and HSP70 | proteins of | ` Leishmania infantum | predicted using | g IEDB, Be | epiPred and BcePred |
|---------|-----------------|-------------|---------------|-------------|-----------------------|-----------------|------------|---------------------|
|         | 1 1             |             |               | 1           |                       | 1 .             |            | 1                   |

<sup>a</sup>IEDB (1), BepiPred (2), BcePred (3); Pt: TDR1 epitopes; Ph: HSP70 epitopes; <sup>b</sup>H17 immunodominant and species-specific epitope; bold amino acid residues are present in epitopes H17, H35<sup>c</sup> and H36<sup>d</sup> (32).

| No. of epitope residues <sup>a</sup> | Position | Sequence                                         | Conformational epitope |
|--------------------------------------|----------|--------------------------------------------------|------------------------|
| 36 (43)                              | 16–57    | FCHRVEIVAREKQVSYDRVAVGLREEM                      | Pect1                  |
|                                      |          | <b>PQWYKQINPRET</b> VPT <sup>b</sup>             |                        |
| 21 (24)                              | 117-140  | LRDPLSGEKRKAMDDNAAYVDGLL                         | Pect2                  |
| 6 (09)                               | 161-169  | ALVPFLVRL                                        | Pect3                  |
| 10 (12)                              | 208-219  | AAQCIENYRHLV                                     | Pect4                  |
| 28 (44)                              | 238–281  | LFCPFVDRARLASELRKFQMHIVEVPLH<br>PQPEWYKYINPRDTVP | Pect5                  |
| 5 (09)                               | 293-301  | ESQLIVQYI                                        | Pect6                  |
| 9 (11)                               | 311-321  | LVPRGDAEKEY                                      | Pect7                  |
| 4 (04)                               | 374-377  | FGGK                                             | Pect8                  |
| 9 (10)                               | 389-399  | LVRAKAFMPE                                       | Pect9                  |
| 11 (18)                              | 413-430  | LNGLAEAGMATPEAKSVF                               | Pect10                 |
| 6 (06)                               | 445-450  | RRAQSG                                           | Pect11                 |
| 17 (20)                              | 21-40    | WQNERVDIIANDQGNRTTPS <sup>b</sup>                | Pech1                  |
| 22 (35)                              | 48-82    | ERLIGDAAKNQVAMNPHNTVFDAKRLI<br>GRKFNDSV          | Pech2                  |
| 15 (29)                              | 136-164  | LGKQVKKAVVTVPAYFNDSQRQATKDAGT                    | Pech3                  |
| 27 (38)                              | 321–359  | RVLQDAKMDKRSVHDVVLVGGSTRIPK<br>VQSLVSDFFGGK      | Pech4                  |
| 6 (06)                               | 381-386  | ILTGGK                                           | Pech5                  |
| 21 (23)                              | 427-449  | SQIFSTYADNQPGVHIQVFEGER <sup>c</sup>             | Pech6                  |
| 21 (32)                              | 476-507  | IEVTFDLDANGILNVSAEEKGTGKRNQITITN                 | Pech7                  |
| 4 (04)                               | 539-542  | EAKN                                             | Pech8                  |
| 11 (15)                              | 561-575  | SGKLEDSDKATLNKE                                  | Pech9                  |
| 5 (07)                               | 603–609  | SVCNPIM                                          | Pech10                 |

Table 2 B-cell conformational epitopes of the TDR1 (GI: 146097469) and HSP70 (GI: 758136) proteins of *Leishmania infantum* predicted using CBTope

<sup>a</sup>Size of the conformational epitope region is in parenthesis; <sup>b</sup>amino acids in bold are part of the linear epitopes of the same region; Pect: TDR1 conformational epitope; Pech: HSP70 conformational epitope; <sup>c</sup>bold amino acids correspond to the immunodominant epitope H30 (32).

| Table 3 Linear epitopes | of the putative calpain-like | cysteine peptidase | (GI:146090707) of | Leishmania infantum | predicted using | IEDB |
|-------------------------|------------------------------|--------------------|-------------------|---------------------|-----------------|------|
| BepiPred and BcePred    |                              |                    |                   |                     |                 |      |

| Programs           | Position  | Sequence                             | Linear<br>epitope |
|--------------------|-----------|--------------------------------------|-------------------|
| 1;2;3 <sup>a</sup> | 81–93     | CFVTKKVRQDGRY                        | P1                |
| 1;2;3              | 243-261   | LHNPFEDEEYVYKGPLNSK                  | P2                |
| 1;2;3              | 264–182   | TWDVKQRAKHDVDDERSIF                  | P3                |
| 1;2;3              | 348-369   | <b>VVIKQEDQRRFTSPDEMTKYLQ</b>        | P4                |
| 1;2;3              | 470–488   | ELCQKEKDRVDFYVDEGTD                  | P5                |
| 1;2;3              | 493-512   | MHQTKPYVSKSGGDAMTEDY                 | P6                |
| 1;2;3              | 516-527   | YLYDDTDRKIAG                         | P7                |
| 1;2;3              | 617–634   | AHHDEQAESDSPFEDKRF                   | P8                |
| 1;2;3              | 699–717   | CFISKNPRKDGRYTFQFHR                  | P9                |
| 1;2;3              | 859-877   | VKMYNPYEDSPYTGPMHRD                  | P10               |
| 1;2;3              | 1055-1073 | YWFLRKGDKDKLDIERLNT                  | P11               |
| 1;2;3              | 1060-1078 | KGDKDKLDIERLNTDVARQ                  | P12               |
| 1;2;3              | 1132–1154 | YLYDANDKRISPSTQATNNREIG              | P13               |
| 1;2;3              | 1241-1259 | RLHHKPHRNEDEILALERK                  | P14               |
| 1;2;3              | 1292–1318 | LDSDPEYMNAERERHNLKKDPRNAGKV          | P15               |
| 1;2;3              | 1442–1459 | NRKPKRDAKAIKDLQRTL                   | P16               |
| 1;2;3              | 1510-1528 | RKEDPLGNRDDIKTLEDEL                  | P17               |
| 1;2;3              | 1526-1544 | DELNDRARELAKDQQANQR                  | P18               |
| 1;2;3              | 1537-1555 | KDQQANQRAFLDQDPYGVP                  | P19               |
| 1;2;3              | 1627–1645 | PLLENPEFKELDTKRRRVL                  | P20               |
| 1;2;3              | 1646–1664 | NRGGDTSKVPDMEDRMNDV                  | P21               |
| 1;2;3              | 1671–1689 | DMNVAERPDYMDTTYKGIP                  | P22               |
| 1,2,3              | 1705–1733 | EVKRQQQKQDPRRNARGIA<br>DTEOELNDRA    | P23               |
| 1:2:3              | 1769–1781 | AEMEAORAKLKKD                        | P24               |
| 1:2:3              | 1772–1791 | EAORAKLKKDMRRNTKPIAE                 | P25               |
| 1:2:3              | 1793–1811 | ENLLNDRAHELAKSLKEKE                  | P26               |
| 1:2:3              | 1801–1819 | HELAKSLKEKERPKFLDAR                  | P27               |
| 1:2:3              | 1973–1991 | LEAOYRDLKKSPKANPODV                  | P28               |
| 1;2;3              | 1981–1999 | KKSPKANPODVADCEELMN                  | P29               |
| 1:2:3              | 2028-2046 | EELPLDTDDEFSNLEAORA                  | P30               |
| 1;2;3              | 2044-2062 | ORARLMROPAKNKKAIDEI                  | P31               |
| 1:2:3              | 2248-2268 | VEMRANPKKNAOSIKSAEEDL                | P32               |
| 1:2:3              | 2273–2291 | MEMAKEKAAEEREDYIDPE                  | P33               |
| 1:2:3              | 2291-2309 | EPEGRKLNDLGLDDDPTFV                  | P34               |
| 1:2:3              | 2310-2328 | GIEEOYRRSRKDPYADODR                  | P35               |
| 1:2:3              | 2329–2347 | LRDLEOMMNDRAHDLAKMK                  | P36               |
| 1:2:3              | 2346-2364 | MKNARDRDMYLDRAPRNVP                  | P37               |
| 1:2:3              | 2495–2513 | LGIPSEDLNPYLDEDPHFH                  | P38               |
| 1:2:3:             | 2516-2534 | EDMYRDAKNNPTKAKKASO                  | P39               |
| 1:2:3              | 2530-2548 | KKASOLLDOMNERAREIAO                  | P40               |
| 1:2:3              | 2712-2734 | FHELETRRAKLKSEDPRAHOKAI              | P41               |
| 1:2:3              | 2785-2803 | KHLRDLKSDSKRNAAAIRE                  | P42               |
| 1:2:3              | 2853–2871 | ERAKLKARDSVKNAKKIOA                  | P43               |
| 1;2;3              | 2872–2893 | LEDQLNERANQLAEAQKQEDL<br>RGLDPKPEGIP | P44               |
| 1;2;3              | 2885-2903 | EAQKQEDLRGLDPKPEGIP                  | P45               |
| 1;2;3;             | 2920–2939 | POLRDMKADPRTRPEDLOOV                 | P46               |
| 1:2:3              | 2993-3014 | LKAODPRRNAAKIRDSEDRLRE               | P47               |
| 1:2:3              | 3015-3037 | RSYELAEOORTKDLENLDOVPEG              | P48               |
| 1:2:3              | 3057-3075 | OHROLAKDSVKDSAKNSEL                  | P49               |
| 1:2:3              | 3076-3092 | LTKLEEKMNDRAHELAK                    | P50               |
| 1:2:3              | 3262-3280 | RARLKLRDPKRNARAIKDL                  | P51               |
| 1:2:3              | 3328-3346 | POLRALKKDPKKNAFAIRR                  | P52               |
| 1;2;3              | 3346-3364 | RVENEMNNRANELARQLLE                  | P53               |

# Table 3 (Continued)

| Programs | Position   | Sequence                                     | Linear<br>epitope |
|----------|------------|----------------------------------------------|-------------------|
| 1;2;3    | 3396–3314  | ERAKLKAQDPRRNQRRIAD                          | P54               |
| 1;2;3    | 3406-3424  | RRNQRRIADLEDRLNDRAV                          | P55               |
| 1;2;3    | 3525-3544  | FQQLRQECANLKAKDPRRN                          | P56               |
| 1;2;3    | 3542-3561  | RNADKVKSLEDQMRSRVHEL                         | P57               |
| 1;2;3    | 3597-3615  | LPELRRAKKSLRDTQRAQG                          | P58               |
| 1;2;3    | 3609-3627  | DTORAOGLLNELNERIHEL                          | P59               |
| 1;2;3    | 3719-3736  | EAVRPHNNPDFHNLATRAR                          | P60               |
| 1:2:3    | 3732-3750  | ATRARELRKDSRRNADKLA                          | P61               |
| 1:2:3    | 3829-3849  | HKLAEAOKREDLRGLNSAPLG                        | P62               |
| 1:2:3    | 3855-3873  | LNPHDDPRFAAKLPELRAO                          | P63               |
| 1:2:3    | 3870-3894  | LRAOKKEGEPRAOSRINDTOAKLDE                    | P64               |
| 1.2.3    | 3928-3946  | ADPEFHOLEAERLDLISKN                          | P65               |
| 1.2.3    | 3944-3962  | SKNPK ANK DAIK DI FAAI N                     | P66               |
| 1.2.3    | 3967-3983  | FLARFHRKGDRGVINAF                            | P67               |
| 1.2.3    | 4076_4094  | RILKADPSADPKKVSDLEO                          | P68               |
| 1,2,3    | 4087 4105  | KEVSDI FODMNDPAHELAF                         | P60               |
| 1,2,3    | 4087-4105  |                                              | P70               |
| 1,2,3    | 4140-4100  |                                              | F /0<br>D71       |
| 1,2,3    | 4107-4191  |                                              | F / 1<br>D72      |
| 1,2,5    | 4204-4225  |                                              | P72               |
| 1;2;3    | 4334-4332  |                                              | P/3               |
| 1;2;3    | 4339-4367  | EKAKLKAQDLI KNANKIKD                         | P/4               |
| 1;2;3    | 4360-4378  | KNANKIKDLEDKLNDRAEN                          | P/5               |
| 1;2;3    | 43/9-439/  | LAEVQKKEDLRNLDGKPRG                          | P/6               |
| 1;2;3    | 4393–4411  | GKPRGIPLESLNPHDDAEF                          | P//               |
| 1;2;3    | 4414-4432  | HLPELRRLKNEQPNHPKIK                          | P78               |
| 1;2;3    | 4433–4451  | DLQAKLDNRADELAKAQID                          | P79               |
| 1;2;3    | 4469–4487  | LPLDSDKLFTSLEKQLRQA                          | P80               |
| 1;2;3    | 4478–4496  | TSLEKQLRQAKQDLKRNAD                          | P81               |
| 1;2;3    | 4488-4506  | KQDLKRNADKITDLQDCMN                          | P82               |
| 1;2;3    | 4495–4513  | ADKITDLQDCMNKRVHELA                          | P83               |
| 1;2;3    | 4542-4560  | AMFRELEAQRAKLKEDPKR                          | P84               |
| 1;2;3    | 4560-4578  | RNADKIKDLEGKLNDRAHE                          | P85               |
| 1;2;3    | 4571-4589  | KLNDRAHELAKAQKEAARG                          | P86               |
| 1;2;3    | 4611–4631  | FVKMEQQLRRLNKDPKRSASA                        | P87               |
| 1;2;3    | 4640-4658  | QDRADELGENLLKGARDKY                          | P88               |
| 1;2;3    | 4650-4668  | LLKGARDKYLDPNPEGVPV                          | P89               |
| 1;2;3    | 4708-4726  | LNDRAAELAKEQRQKDRAF                          | P90               |
| 1;2;3    | 4721-4739  | QKDRAFLDPEPEGIPIADV                          | P91               |
| 1;2;3    | 4752-4770  | DYLRKLKKDPRRNADAIAD                          | P92               |
| 1;2;3    | 4766–4784  | DAIADTQESMNDRAHELAK                          | P93               |
| 1:2:3    | 4813-4831  | LKFRDAANRRRDAKRRRLP                          | P94               |
| 1:2:3    | 4817-4835  | DAANRRRDAKRRLPTTDI                           | P95               |
| 1.2.3    | 4874-4892  | PLDADKEFAALEAERRRRS                          | P96               |
| 1:2:3    | 4885-4904  | FAERRRSKDPRAAKRNKDV                          | P97               |
| 1.2.3    | 4905-4923  | IR DI ENOMSDRAHOLAKEE                        | P98               |
| 1.2.3    | 4921_4939  | KEEFAKORDEMDOEPEGVP                          | P00               |
| 1.2.3    | 4940_4958  | I ERI PI DTDPEEK DA EIAR                     | P100              |
| 1,2,3    | 4050 4077  |                                              | P101              |
| 1,2,3    | 5010. 5028 | Ι ΡΙ SDDPFENVI ΔΚΟΡΟΛΙ                       | D102              |
| 1,2,3    | 5022 5041  |                                              | P102              |
| 1,2,3    | 5022 5051  |                                              | P103              |
| 1,2,3    | 5099 5107  | KUKDPENIKDLEEKMINDKVH<br>MENELLVAMVDDDSNACVI | P104              |
| 1,2,5    | 5055-5170  | MENELLKAWKDYKSNAGKI                          | P105              |
| 1;2;3    | 5152-5170  | LNPLEKKKKDIKKNPKKNA                          | P106              |
| 1;2;3    | 5165-5183  | NYKKNADVLKNLEKEIAAK                          | P107              |
| 1;2;3    | 5189-5207  | RDFLAKERAFLDQEPEGVQ                          | P108              |

| Programs | Position  | Sequence                | Linear |
|----------|-----------|-------------------------|--------|
|          |           | *                       |        |
| 1;2;3    | 5226-5244 | LRALKKQPAKNRDAIEDLE     | P109   |
| 1;2;3    | 5235-5253 | KNRDAIEDLEERMNDRAHH     | P110   |
| 1;2;3    | 5254-5272 | LAKDYLAKDRDYLEKEPLG     | P111   |
| 1;2;3    | 5269-5287 | EPLGVPVEELPLNEDVTFR     | P112   |
| 1;2;3    | 5284-5306 | VTFRDAEEKRRALKRDPRGNAKA | P113   |
| 1;2;3    | 5307-5325 | IKDLEDQLNDRAEQLAQQK     | P114   |
| 1;2;3    | 5322-5340 | AQQKLDKERAFLDPRPEGI     | P115   |
| 1;2;3    | 5343-5361 | KDMQLDRDKAFKDMERQLR     | P116   |
| 1;2;3    | 5362-5380 | QLRCDPRKNANAIRDMEED     | P117   |
| 1;2;3    | 5371-5389 | ANAIRDMEEDMNSRAHVLA     | P118   |
| 1;2;3    | 5390-5408 | KRQLADDRNFLNPEPRGVP     | P119   |
| 1;2;3    | 5413-5431 | ALEDDPEFRKTELARREAK     | P120   |
| 1;2;3    | 5427-5445 | RREAKRNPKNADRVRELES     | P121   |
| 1;2;3    | 5476-5494 | EELPLDTDPDFHGMEVDRR     | P122   |
| 1;2;3    | 5490-5508 | EVDRRKLNKDPAKNSRTIK     | P123   |
| 1;2;3    | 5509-5527 | DLEEQLNNRARELARDKKG     | P124   |
| 1;2;3    | 5528-5546 | YODPVFHEANEDIAEOWPR     | P125   |
| 1;2;3    | 5594-5612 | SRLFODKAHPONOPYRVTL     | P126   |
| 1;2;3    | 5613-5631 | FNPDSSPVTVEVDDRVPCD     | P127   |
| 1:2:3    | 5630-5648 | CDDKREPKFTOVPSRMWYP     | P128   |
| 1;2;3    | 5823-5841 | RLSSPGEWNNYTAGGTSKY     | P129   |
| 1;2;3    | 5980-5993 | SLHPGDEEGERLDF          | P130   |

<sup>a</sup>IEDB (1), BepiPred (2), BcePred (3); P: CP epitopes.

conformational epitopes of CP, 67 contained, entirely or partially, amino acid residues of this proteins linear epitopes. Regarding the TDR1 protein, three linear epitopes (Pt1, Pt3 and Pt4) were partially or entirely in conformational epitope region. For the HSP70 protein, two epitopes were exclusively conformational, and only eight contain either partial or entire linear epitopes (Table 2).

The structures predicted by the PHD program were the  $\alpha$  helix, extended strand and random coil. For the three proteins, the  $\beta$  sheet was not predicted. The H17 immunodominant epitope residues of HSP70 (23), which correspond to the Ph5 linear epitope, are located in the  $\alpha$  helix (241–249) and random coil (250–260) of this proteins secondary structure regions. TDR1 exhibits a similar frequency in terms of the amounts of  $\alpha$  helices (45·1%) and random coils (43·8%). In evaluating the location of the linear and conformational epitopes, it is apparent that they are primarily located in the  $\alpha$  helices and random coils. The linear epitopes were mainly composed of amino acids E, A, K, R, D, L and T.

Using the IEDB, BepiPred and BcePred programs, 14, 4 and 130 linear epitopes were predicted for the HSP70, TDR1 and CP proteins, respectively. TDR1 and CP were nor previously reported as antigens and were discovered by our regular screening procedure. On the other hand, the HSP70 protein was used as a prediction control because its epitopes have been experimentally tested by Wallace et al. (25) and Quijada et al. (23). The three programs predicted the entire region of the H17 epitope (241-260) of L. infantum HSP70. According to Quijada et al. (23), the H17 peptide is an immunodominant and species-specific B-cell epitope, as it is different from the equivalent region in the HSP70 of Trypanosoma cruzi. Additionally, the programs predicted one epitope located in the carboxy-terminal region (from Met-525 to Glu-545) identified herein as Ph10, which includes some amino acids residues (EAD-DRA) previously described as immunodominant by Wallace et al. (25). Among the 14 linear epitopes predicted, five are above the cut-off point established by Quijada et al. (23). Additionally, seven are within the limit or slightly below the cut-off point. Only two epitopes predicted were not equivalent to the immunogenic peptides identified by the authors cited above. The exclusively conformational Pech2 and Pech6 epitopes coincide with five more peptides described by Quijada et al. (23). Pech6 contains 14 amino acids (NQPGVHIQVFEGER) of the 20 that are part of the immunodominant H30 peptide, as described by the above authors.

Combining the results of the prediction of linear and conformational HSP70 epitopes, seven epitopes were clearly immunogenic, seven were within the cut-off limit determined by Quijada *et al.* (23), and only two epitopes

| Table 4 B-cell conformational epitopes of the calpain-like cysteine | peptidase (GI: 146090707) of Leishmania infantum predicted using |
|---------------------------------------------------------------------|------------------------------------------------------------------|
| CBTope                                                              |                                                                  |

| No. of epitope<br>residues <sup>a</sup> | Position  | Sequence                                                                                         | Conformational epitope |
|-----------------------------------------|-----------|--------------------------------------------------------------------------------------------------|------------------------|
| 19 (62)                                 | 19–62     | DRENAHIAREWQRITEVYPAGVNQPLLPEVFSREQFG<br>QGNHYEC                                                 | Pecc1                  |
| 6 (6)                                   | 82-87     | FVTKKV                                                                                           | Pecc2                  |
| 38 (20)                                 | 95-132    | FQFFRGQEWVKVEIDDIIAMEEGEVLYARSPTEHWWPL                                                           | Pecc3                  |
| 36 (28)                                 | 164-199   | PVLNIPMDAKLAKAAGAEVTEGFYWLVLAORIOSGO                                                             | Pecc4                  |
| 24 (15)                                 | 208-231   | DIELETMGLQREQQYGVLEIFSLT                                                                         | Pecc5                  |
| 14 (12)                                 | 252-265   | YVYKGPLNSKDTTW                                                                                   | Pecc6                  |
| 70 (58)                                 | 304–373   | EADATYFHDEWKGESAGGNPTSVSWRKNPLYFVRNSGSTA<br>FEIV <b>VVIKOEDORRFTSPDEMTKYLO</b> CGMV              | Pecc7                  |
| 4 (4)                                   | 396-399   | IHKS                                                                                             | Pecc8                  |
| 9 (8)                                   | 420-428   | YLVPSCMHK                                                                                        | Pecc9                  |
| 21 (17)                                 | 461-481   | WANSATKNVELCQKEKDRVDF                                                                            | Pecc10                 |
| 7 (6)                                   | 487-493   | TDIHILM                                                                                          | Pecc11                 |
| 4 (4)                                   | 501-504   | SKSG                                                                                             | Pecc12                 |
| 15 (10)                                 | 527-541   | GVHAATNFREISIIH                                                                                  | Pecc13                 |
| 5 (5)                                   | 552-556   | SITCP                                                                                            | Pecc14                 |
| 16 (7)                                  | 575-590   | NVRIVDPPEDATMEDD                                                                                 | Pecc15                 |
| 103 (74)                                | 624–726   | ESDSPFEDKRFYVDNRGATSEPWVHIGDLYPEGKTRPLL<br>PNELSRDQFGQ<br>GDHYDCSTLTAFAALMEHHPDVIRNCFISKNPRKDGRY | Pecc16                 |
|                                         |           | TF <b>QFHR</b> YGQWIKVEI                                                                         |                        |
| 11 (10)                                 | 742–752   | SPTHHWWPLLL                                                                                      | Pecc17                 |
| 4 (4)                                   | 787–790   | PMEA                                                                                             | Pecc18                 |
| 5 (5)                                   | 804-808   | QFWRD                                                                                            | Pecc19                 |
| 24 (21)                                 | 858-881   | LVKMYNPYEDSPYTGPMHRDDSSW                                                                         | Pecc20                 |
| 25 (16)                                 | 921–945   | HPSYNFNSEWGDTTSGGNVSLVTWR                                                                        | Pecc21                 |
| 15 (14)                                 | 959–973   | PVQIIGMIRQPDQRH                                                                                  | Pecc22                 |
| 5 (4)                                   | 1003-1007 | TYLVT                                                                                            | Pecc23                 |
| 9 (4)                                   | 1018-1026 | LYLHNREVA                                                                                        | Pecc24                 |
| 10 (10)                                 | 1038-1047 | YIIPTGMRRD                                                                                       | Pecc25                 |
| 12 (7)                                  | 1125-1136 | AQDFLSMYLYDA                                                                                     | Pecc26                 |
| 27 (22)                                 | 1140-1166 | RISPSTQATNNREIGLVQHVSKPGRYA                                                                      | Pecc27                 |
| 6 (4)                                   | 1241-1246 | RLHHKP                                                                                           | Pecc28                 |
| 10 (9)                                  | 1265-1274 | HELARALLGK                                                                                       | Pecc29                 |
| 19 (18)                                 | 1285-1303 | IEKLAPL <b>LDSDPEYMNAER</b>                                                                      | Pecc30                 |
| 5 (4)                                   | 1353-1357 | RDDIE                                                                                            | Pecc31                 |
| 9 (7)                                   | 1381-1389 | NARKINDME                                                                                        | Pecc32                 |
| 14 (8)                                  | 1402-1415 | DMHKKERTYLDPEP                                                                                   | Pecc33                 |
| 7 (6)                                   | 1474–1480 | ERELFLD                                                                                          | Pecc34                 |
| 8 (6)                                   | 1502-1509 | KEIERLQL                                                                                         | Pecc35                 |
| 22 (17)                                 | 1546-1567 | FLDQDPYGVPLEKLCLDYNDDF                                                                           | Pecc36                 |
| 4 (4)                                   | 1574-1577 | LRAL                                                                                             | Pecc37                 |
| 4 (4)                                   | 1586-1589 | TAIA                                                                                             | Pecc38                 |
| 6 (5)                                   | 1606-1611 | EAARDR                                                                                           | Pecc39                 |
| 5 (4)                                   | 1649-1653 | GDTSK                                                                                            | Pecc40                 |
| 29 (27)                                 | 1666-1694 | LEIAHDMNVAERPDYMDTTYKGIPVEDLP                                                                    | Pecc41                 |
| 11 (8)                                  | 1703-1713 | SLEVKRQQQKQ                                                                                      | Pecc42                 |
| 5 (5)                                   | 1731-1735 | DRAME                                                                                            | Pecc43                 |
| 5 (5)                                   | 1738-1742 | AEKLK                                                                                            | Pecc44                 |
| 25 (18)                                 | 1746-1770 | NYLDPEPEGVPLRLVPLDSDAAFAE                                                                        | Pecc45                 |
| 6 (5)                                   | 1805-1810 | KSLKEK                                                                                           | Pecc46                 |
| 12 (9)                                  | 1822-1833 | GIPYTELPLDAD                                                                                     | Pecc47                 |
| 29 (26)                                 | 1849–1877 | <b>OPHKNATAIODLEEALNDRAGELAKEKLA</b>                                                             | Pecc48                 |
| 19 (13)                                 | 1927-1945 | LOGEMDDMVNALAAEELAR                                                                              | Pecc49                 |
| 45 (39)                                 | 1957-2001 |                                                                                                  | Pecc50                 |

Table 4 (Continued)

| No. of epitope        |           |                                              | Conformational |
|-----------------------|-----------|----------------------------------------------|----------------|
| residues <sup>a</sup> | Position  | Sequence                                     | epitope        |
|                       |           | RLVESLPLNDDPQFHK <b>LEAQYRDLKKSPKANPQDVA</b> |                |
|                       |           | DCEELMNDR                                    |                |
| 13 (10)               | 2086-2098 | DEAPQNIPLKYIP                                | Pecc51         |
| 12 (7)                | 2146-2157 | ALQQQVRASVLP                                 | Pecc52         |
| 17 (13)               | 2215-2231 | WEERANLGNPLGFSPED                            | Pecc53         |
| 10 (10)               | 2290-2299 | PEPEGRKLND                                   | Pecc54         |
| 12 (12)               | 2310-2321 | GIEEQYRRSRKD                                 | Pecc55         |
| 5 (4)                 | 2368-2372 | LPLDT                                        | Pecc56         |
| 21 (16)               | 2377-2397 | GRLEAQRAKLCQNPVRNAQSI                        | Pecc57         |
| 4 (4)                 | 2407-2410 | RADV                                         | Pecc58         |
| 4 (4)                 | 2415-2418 | ALKN                                         | Pecc59         |
| 4 (4)                 | 2452-2455 | ALKS                                         | Pecc60         |
| 9 (7)                 | 2465-2473 | RAVEEQMND                                    | Pecc61         |
| 19 (19)               | 2488-2506 | RDMEPNSLGIPSEDLNPYL                          | Pecc62         |
| 9 (9)                 | 2516-2524 | EDMYRDAKN                                    | Pecc63         |
| 4 (4)                 | 2568-2571 | ETLP                                         | Pecc64         |
| 17 (17)               | 2589-2605 | RKGPSGGKKSAERLADV                            | Pecc65         |
| 11 (5)                | 2618-2628 | NAARKQYVDAM                                  | Pecc66         |
| 9 (6)                 | 2638-2646 | KLGDDPPFV                                    | Pecc67         |
| 22 (12)               | 2711-2732 | VFHELETRRAKLKSEDPRAHQK                       | Pecc68         |
| 23 (19)               | 2738-2760 | EDQLNDRAHELAKEVKEGELRAL                      | Pecc69         |
| 16 (11)               | 2771-2786 | VIIPHNDVEFNNCAKH                             | Pecc70         |
| 33 (26)               | 2812-2844 | GAELAEAMLKQDRSYLKPQAAAVPLKYLPLDTD            | Pecc71         |
| 19 (10)               | 2899-2917 | PEGIPLYVIDPHSDAKFAS                          | Pecc72         |
| 21 (14)               | 2933-2953 | PEDLOOVVDAMNDRAHELASE                        | Pecc73         |
| 10 (7)                | 2962-2971 | YLEEEPKGVP                                   | Pecc74         |
| 32 (19)               | 3026-3057 | <b>KDLENLDOVPEG</b> LPITLVNPHDDPAFAKMVNO     | Pecc75         |
| 10 (10)               | 3065-3074 | SVKDSAKNSE                                   | Pecc76         |
| 6 (5)                 | 3091-3096 | AKLMLE                                       | Pecc77         |
| 10 (4)                | 3183-3192 | NPHADSOFAE                                   | Pecc78         |
| 13 (12)               | 3231-3243 | DRDYLDPEPEGVA                                | Pecc79         |
| 13 (13)               | 3253-3265 | PEFHDMEVGRARL                                | Pecc80         |
| 9 (8)                 | 3278-3286 | KDLEORLND                                    | Pecc81         |
| 4 (4)                 | 3293-3296 | RROL                                         | Pecc82         |
| 7 (5)                 | 3330-3336 | LRALKKD                                      | Pecc83         |
| 36 (21)               | 3368-3403 | GYLEPNPENVALEYLSLDKDPEIAEMEVE <b>RAKLKAO</b> | Pecc84         |
| 67 (43)               | 3422-3488 | RAVELAVAKKAEELAHFAPOYNGIETAAMRPYDDPE         | Pecc85         |
|                       |           | FAALVDOLRKLEKASAGASPEAEKVLTDMDA              |                |
| 19 (10)               | 3496-3514 | EKVEGDLWFLDKEPEGIPL                          | Pecc86         |
| 52 (25)               | 3524-3575 | IFOOLROECANLKAKDPRRNADKVKSLEDOMSRRVH         | Pecc87         |
| ()                    |           | ELAKHLKESDFDGVDT                             |                |
| 8 (6)                 | 3613-3620 | AOGLLNEL                                     | Pecc88         |
| 8 (7)                 | 3631-3638 | ALSGDRSA                                     | Pecc89         |
| 17 (11)               | 3650-3666 | SDLPLDTDGIYSGLEVE                            | Pecc90         |
| 34 (26)               | 3703-3736 | DDLKNVDPKPHGIPIEAVRPHNNPDFHNLATRAR           | Pecc91         |
| 18 (17)               | 3766-3783 | EMLGNDRGYLDPEPEGVP                           | Pecc92         |
| 51 (42)               | 3795-3845 | FHEMEVORAVLVAODOVKNROAIADLEGRUNDCAH          | Pecc93         |
|                       | 2770 2010 | KLAEAQKREDLRGLNS                             | 1000,0         |
| 13 (5)                | 3865-3877 | AKLPELRAQKKEG                                | Pecc94         |
| 5 (5)                 | 3892-3896 | LDEIL                                        | Pecc95         |
| 17 (14)               | 3907-3923 | DRARYLYPTPEGIPVAA                            | Pecc96         |
| 16 (7)                | 3929-3944 | DPEFHQLEAERLDLIS                             | Pecc97         |
| 7 (7)                 | 3955-3961 | KDLEAAL                                      | Pecc98         |
| 15 (12)               | 3969-3983 | AREHRKGDRGYLNAE                              | Pecc99         |
| 4 (4)                 | 4018-4021 | NAAA                                         | Pecc100        |
| . /                   |           |                                              |                |

| Table 4 | (Continued) |
|---------|-------------|
|---------|-------------|

| No. of epitope<br>residues <sup>a</sup> | Position  | Sequence                                              | Conformational epitope |
|-----------------------------------------|-----------|-------------------------------------------------------|------------------------|
| 8 (6)                                   | 4056 4062 |                                                       | D101                   |
| 8 (6)                                   | 4056-4063 | PVKMLKPH<br>DDSADDKKVSDI EODMNDDAHELAEEALACDD         | Pecc101<br>Dece102     |
| 32 (30)                                 | 4081-4112 | UPSADPKKVSDLEQDWINDKAHELAEEALAGDK                     | Pecc102                |
| 11 (5)                                  | 4119-4129 | KPEGIAIESLP<br>WYNG AMAA ER FORDAN                    | Pecc103                |
| 15 (12)                                 | 4152-4166 | KKNQAKAAELEGRUN                                       | Pecc104                |
| 18 (15)                                 | 4192-4209 | PVDLLNPHEDETFASLAF                                    | Pecc105                |
| 35 (30)                                 | 4250-4284 | GDRDYLDPNPEGVPLRVLPLNEDPEFHEMEVQRAV                   | Pecc106                |
| 5 (4)                                   | 4317-4321 | NGDRG                                                 | Pecc107                |
| 48 (43)                                 | 4394-4441 | KPRGIPLESLNPHDDAEFASHLPELRRLKNEQPN<br>HPKIKDLQAKLDNR  | Pecc108                |
| 10 (9)                                  | 4474-4483 | DKLFTSLEKQ                                            | Pecc109                |
| 9 (7)                                   | 4495-4503 | ADKITDLQD                                             | Pecc110                |
| 11 (10)                                 | 4522-4532 | RYLDPEPENVP                                           | Pecc111                |
| 11 (5)                                  | 4547-4557 | LEAQRAKLKED                                           | Pecc112                |
| 37 (28)                                 | 4571-4607 | KLNDRAHELAKAQKEAARGFLNPTSHRVPK<br>ALLPLDE             | Pecc113                |
| 45 (30)                                 | 4646-4690 | LGENLLKGARDKYLDPNPEGVPVGYLPLDSDP<br>QYSHAELQRAVLK     | Pecc114                |
| 13 (12)                                 | 4703-4715 | DLEKVLNDRAAEL                                         | Pecc115                |
| 10 (6)                                  | 4735-4744 | PIADVPLDDD                                            | Pecc116                |
| 49 (41)                                 | 4766-4814 | DAIADTQESMNDRAHELAKGVVAEDLACLPRAAY<br>RGIPKEDLNLHTYLK | Pecc117                |
| 12 (9)                                  | 4873-4884 | VPLDADKEFAAL                                          | Pecc118                |
| 11 (8)                                  | 4903-4913 | DVIRDLENOMS                                           | Pecc119                |
| 47 (41)                                 | 4952–4998 | KDAEIARYKAKTDPKADPKKVAALEKRMNDRA<br>HELAKVELAKDRAEL   | Pecc120                |
| 45 (40)                                 | 5042-5086 | LEERMNDRVHDIAREFLSKHRGYLNPEPQNV<br>PIADIPI NRDPIFR    | Pecc121                |
| 11 (6)                                  | 5100-5110 | RSNAGKIAFLO                                           | Pecc122                |
| 11 (0)                                  | 5244-5254 | FFRMNDRAHHL                                           | Pecc122                |
| 23(21)                                  | 5265-5287 | VI EKEPI GVPVEELPI NEDVTER                            | Pecc123                |
| 23(21)<br>24(20)                        | 5378 5401 | FEDMNSDAHVI AKDOLADDDNELN                             | Pace125                |
| 24(20)                                  | 5464 5472 |                                                       | Page126                |
| 9 (9)<br>12 (6)                         | 5404-5472 | AI LDFEFEO<br>DEHCMEVDDDKI                            | Page127                |
| 12 (0)                                  | 5509 5515 | DTHGME V DKKKL                                        | Pecc12/                |
| 8 (5)                                   | 5502 5509 | KDLEEQLN                                              | Pecc128                |
| 0 (0)                                   | 5526 55(7 |                                                       | Pecc129                |
| 32 (23)                                 | 5500 5614 | ANEDIAEQWPKIKELYPEGVYDPVIPDIILPS                      | Pecc130                |
| 16 (13)                                 | 5599-5614 | DKAHPQNQPYKVILFN                                      | Pecc131                |
| 12 (11)                                 | 5629-5640 | PCDDKREPKFIQ                                          | Pecc132                |
| 23 (13)                                 | 5648-5670 | PLLLEKAYAKFVGGYENFNNCNA                               | Pecc133                |
| 14 (13)                                 | 5684-5697 | HISLEDPKHAAATN                                        | Pecc134                |
| 14 (12)                                 | 5729–5742 | PDGLHPQCSYALMD                                        | Pecc135                |
| 46 (34)                                 | 5753–5798 | PLDIVIKVHNCYTDAPHYNGPLRKGDSNWT<br>ADVKRACSFSPDESDM    | Pecc136                |
| 27 (23)                                 | 5813-5839 | MQRCHINCGDRLSSPGEWNNYTAGGTS                           | Pecc137                |
| 40 (27)                                 | 5856-5895 | TSRPATILAEVRHTNPLYVDETNCKQYPY<br>TGLTLMQPSNA          | Pecc138                |
| 15 (13)                                 | 5929-5943 | PPSSTCYLIPYTKDR                                       | Pecc139                |
| 12 (5)                                  | 6004-6015 | LLHOTKISDPNS                                          | Pecc140                |
| 6 (6)                                   | 6038-6043 | KIGTTG                                                | Pecc141                |
| 4 (4)                                   | 6056-6059 | KAPO                                                  | Pecc142                |
| 8 (8)                                   | 6136–6143 | RRTDSLPP                                              | Pecc143                |

<sup>a</sup>Size of the conformational epitope region is in parenthesis; amino acids in bold are part of the linear epitopes of the same region; Pecc: calpain-like cysteine peptidase conformational epitope.

were falsely predicted. Considering the linear and conformational epitopes, it is clear that they are concentrated in the carboxy-terminal region of HSP70, which is recognized as the proteins most divergent region (26). These results indicate that the predictions may be more reliable when the tools are used in combination for identifying epitopes.

Using the same methodology, among the conformational epitopes predicted, 46.8% and 27.3% are part of the linear epitopes of the CP and TDR1 proteins, respectively.

The arginine (R), glutamic acid (E) and lysine (K) amino acids are among the most frequent in the CP, TDR1 and HSP70 proteins, respectively. These amino acids contain side chains with basic (arginine, lysine) and acidic (glutamic acid) functional groups that allow the formation of ionic bonds (electrostatic bonds) and hydrogen bonds (27), which are interactions that also occur when the antibody recognizes the epitope. These amino acids are also residues with greater scalar values of accessibility to the solvent (8), an important factor for immunogenicity of an antigen or synthetic peptide (28). These findings indicate that the linear B-cell epitopes simultaneously predicted in this study using the three programs are good candidates to be tested in diagnostic assays and vaccines for visceral leishmaniasis.

Using the PHD program, it appears that the proteins analysed are composed of  $\alpha$  helices, extended strands and random coils, with a predominance of  $\alpha$  helices for the CP and TDR1 proteins. There is a strong tendency for certain amino acids to form a specific secondary structure, in which case the residues glutamate (E), alanine (A), leucine (L), methionine (M), glutamine (Q), lysine (K), arginine (R) and histidine (H) are preferably found in  $\alpha$  helices (29). HSP70 and TDR1 are, respectively, composed of 39.4% and 45.1%  $\alpha$  helix, which corroborates the amino acid composition.

For the TDR1 protein, most of the amino acids residues that compose the linear epitopes are located in the secondary structure of  $\alpha$  helices and random coils. In HSP70, the immunodominant H17 epitope is located in an  $\alpha$  helix and random coils region. None of the proteins were predicted to have loop or turn secondary structures. Secondary structures, loops and turns that are present on the surface of proteins may participate in interactions with other molecules.

The identification of epitopes using bioinformatics still has limitations, and studies are therefore necessary to improve the accuracy of B-cell epitope prediction methods. According to Greenbaum *et al.* (30), higher accuracy can be obtained by improving the quality of existing databases, which contain incorrectly delineated epitopes. This is important because the prediction methods use epitope databases to evaluate the methods efficiency. As the prediction results produced by several methods may be different (28), it may be more appropriate to use multiple tools to obtain more consistent and accurate results, which was the approach used in this study. Subsequently, bioinformatics data must be confirmed by laboratory assays so that the information is fed into the databases more accurately.

Most B-cell epitopes in proteins are conformational or discontinuous (31); however, most of the prediction methods available only identify linear or continuous epitopes. The main obstacle is the necessity of knowing the antigen structure to predict conformational epitopes, and proteinmodel databases are still limited in the amount of tertiary and quaternary structures available. Nevertheless, the identification of linear epitopes has shown promising research results for identifying vaccine antigens and allergens, as well as for the immunodiagnosis of leishmaniasis (23,32).

This work describes for the first time the use of a combination of different *in silico* epitope prediction methods and an assessment of secondary structures for the identification of *Leishmania* epitopes.

#### ACKNOWLEDGEMENTS

The authors thank the National Institute of Science and Technology of Tropical Diseases (Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais – INCT-DT), MCT/CNPq, which was the source of financial support for some of these studies.

#### CONFLICT OF INTERESTS

The authors declare that they have no conflict of interests.

#### REFERENCES

- List L, Qi W, Maag E, Gottstein B, Müller N & Felger I. Serodiagnosis of *Echinococcus* spp. infection: explorative selection of diagnostic antigens by peptide microarray. *PLoS Negl Trop Dis* 2010; 4: e771.
- 2 Van Regenmortel MH. Immunoinformatics may lead to a reappraisal of the nature of B cell epitopes and of the feasibility of

synthetic peptide vaccines. J Mol Recognit 2006; 19: 183–187.

- 3 Gomara MJ & Haro I. Synthetic peptides for the immunodiagnosis of human diseases. *Curr Med Chem* 2007; 14: 531–546.
- 4 Chen P, Rayner S & Hu KH. Advances of bioinformatics tools applied in virus epitopes prediction. *Virol Sin* 2011; 26: 1–7.
- 5 Hopp TP & Woods KR. Prediction of protein antigenic determinants from amino acid sequences. *Proc Natl Acad Sci USA* 1981; 78: 3824–3828.
- 6 Parker JM, Guo D & Hodges RS. New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted

surface residues with antigenicity and X-rayderived accessible sites. *Biochemistry* 1986; **25**: 5425–5432.

- 7 Karplus PA & Schulz GE. Prediction of chain flexibility in proteins. A tool for the selection of peptide antigens. *Naturwissenschaften* 1985; **72**: 212–213.
- 8 Emini EA, Hughes JV, Perlow DS & Boger J. Induction of hepatitis A virus: neutralizing antibody by a virus-specific synthetic peptide. J Virol 1985; 55: 836–839.
- 9 Kolaskar AS & Tongaonkar PC. A semiempirical method for prediction of antigenic determinants on protein antigens. *FEBS Lett* 1990; 276: 172–174.
- 10 Pellequer JL, Westhof E & Van Regenmortel MH. Correlation between the location of antigenic sites and the prediction of turns in proteins. *Immunol Lett* 1993; **36**: 83–99.
- 11 Pellequer JL, Westhof E & Van Regenmortel MH. Predicting location of continuous epitopes in proteins from their primary structures. *Methods Enzymol* 1991; 203: 176–201.
- 12 Saha S & Raghava GP. BcePred: prediction of continuous B-cell epitopes in antigenic sequences using physico-chemical properties. *Artificial Immune Systems, Third International Conference (ICARIS 2004), LNCS,* 2004; **3239**: 197–204.
- 13 Söllner J & Mayer B. Machine learning approaches for prediction of linear B-cell epitopes on proteins. *J Mol Recognit* 2006; 19: 200–208.
- 14 Larsen JE, Lund O & Nielsen M. Improved method for predicting linear B-cell epitopes. *Immunome Res* 2006; 2: 2.
- 15 Levitt M. Conformational preferences of amino acids in globular proteins. *Biochemistry* 1978; 17: 4277–4285.

- 16 Peters B, Sidney J, Bourne P, et al. The immune epitope database and analysis resource: from vision to blueprint. PLoS Biol 2005; 3: e91.
- 17 Saha S & Raghava GP. Prediction of continuous B-cell epitopes in the antigen using recurrent neural network. *Proteins* 2006; 65: 40–48.
- 18 El-Manzalawy Y, Dobbs D & Honavar V. Predicting linear B-cell epitopes using string kernels. J Mol Recognit 2008; 21: 243–255.
- 19 Sweredoski MJ & Baldi P. COBEpro: a novel system for predicting continuous B-cell epitopes. *Protein Eng Des Sel* 2009; 22: 113– 120.
- 20 Ansari HR, Gajendra PS & Raghava GP. Identification of conformational B-cell epitopes in an antigen from its primary sequence. *Immunol Res* 2010; 6: 6.
- 21 Gao J, Faraggi E, Zhou Y, Ruan J & Kurgan L. BEST: improved prediction of B-cell epitopes from antigen sequences. *PLoS ONE* 2012; 7: e40104.
- 22 Noya O, Patarroyo ME, Guzman F & Alarcon de Noya B. Immunodiagnosis of parasitic diseases with synthetic peptides. *Curr Protein Pept Sci* 2003; 4: 299–308.
- 23 Quijada L, Requema MJ, Soto M, et al. Mapping of the linear antigenic determinants of the *Leishmania infantum* Hsp70 recognized by leishmaniasis sera. *Immunol Lett* 1996; **52**: 73–79.
- 24 Peters B, Sidney J, Bourne P, et al. The design and implementation of the immune epitope database and analysis resource. *Immunogenetics* 2005; 57: 326–336.
- 25 Wallace GR, Ball AE, MacFarlane J, El Safi SH, Miles MA & Kelly JM. Mapping of a visceral leishmaniasis-specific immunodomi-

nant B-cell epitope of *Leishmania donovani* Hsp7O. *Infect Immun* 1992; **60**: 2688–2693.

- 26 de Andrade CR, Kirchhoff LV, Donelson JE & Otsu K. Recombinant *Leishmania* Hsp9O and Hsp7O are recognized by sera from visceral leishmaniasis patients but not Chagas disease patients. *J Clin Microbiol* 1992; **30**: 330–335.
- 27 Smith C, Marks AD & Liebermam M. Bioquimica Médica Básica de Marks [Basic Medical Biochemistry by Marks], 2nd edn. Porto Alegre, Artmed, 2007.
- 28 Mahdavi M, Mohabaktar M, Keyhanfar M, Dehkordi AJ & Rabbani M. Linear and conformacional B Cell epitope prediction of the HER 2 ECD-subdomain III *in silico* methods. *Asian Pac J Cancer Prev* 2012; 13: 3053–3059.
- 29 Berg JM, Tymoczko JL & Stryer L. Bioquímica [Biochemistry], 6th edn. Rio de Janeiro, Guanabara Koogan, 2008.
- 30 Greenbaum JA, Andersen PH, Blythe M, et al. Towards a consensus on datasets and evaluation metrics for developing B-cell epitope prediction tools. J Mol Recognit 2007; 20: 75–82.
- 31 Novotn J, Handschumacher M, Haber E, et al. Antigenic determinants in proteins coincide with surface regions accessible to large probes (antibody domains). Proc Natl Acad Sci USA 1986; 83: 226–230.
- 32 Faria AR, Costa MM, Giusta MS, et al. High-throughput analysis of synthetic peptides for the immunodiagnosis of canine visceral leishmaniasis. PLoS Negl Trop Dis 2011; 5: e1310.