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Ana Lúcia Borges Starling1,2,3, Jordana Grazziela Alves Coelho-dos-Reis1#, Vanessa Peruhype-Magalhães1#, Marcelo
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Abstract

This study aimed at establishing the immunological signature and an algorithm for clinical

management of the different clinical stages of the HTLV-1-infection based on serum

biomarkers. A panel of serum biomarkers was evaluated by four sets of innovative/non-
conventional data analysis approaches in samples from 87 HTLV-1 patients: asymptomatic

carriers (AC), putative HTLV-1 associated myelopathy/tropical spastic paraparesis (pHAM/TSP)

and HAM/TSP. The analysis of cumulative curves and molecular signatures pointed out that
HAM/TSP presented a pro-inflammatory profile mediated by CXCL10/LTB-4/IL-6/TNF-a/IFN-g,

counterbalanced by IL-4/IL-10. The analysis of biomarker networks showed that AC presented a

strongly intertwined pro-inflammatory/regulatory net with IL-4/IL-10 playing a central role,

while HAM/TSP exhibited overall immune response toward a predominant pro-inflammatory
profile. At last, the classification and regression trees proposed for clinical practice allowed for

the construction of an algorithm to discriminate AC, pHAM and HAM/TSP patients with the

elected biomarkers: IFN-g, TNF-a, IL-10, IL-6, IL-4 and CysLT. These findings reveal a complex

interaction among chemokine/leukotriene/cytokine in HTLV-1 infection and suggest the use of
the selected but combined biomarkers for the follow-up/diagnosis of disease morbidity of

HTLV-1-infected individuals.
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Introduction

The human T-lymphotropic virus type 1 (HTLV-1) is a delta-

type retrovirus, which infects approximately 10–20 million

people worldwide (Carneiro-Proietti et al., 2002; Proietti

et al., 2005). In addition to adult T-cell leukemia (ATL)

(Poiesz et al., 1980), HTLV-1 is also involved in the etiology

of chronic inflammatory diseases, such as the HTLV-1-

associated myelopathy/tropical spastic paraparesis (HAM/

TSP) (Gessain et al., 1985; Osame et al., 1986) uveitis

(Mochizuki et al., 1992) skin disorders (Coelho-dos-Reis

et al., 2013) infective dermatitis (La Grenade et al., 1998;

Nishimoto et al., 2009; Primo et al., 2005) and may also be

associated with arthropathies, polymyositis and Sjögren

syndrome (Taylor & Matsuoka, 2005).

While the majority of infected individuals remain lifelong

asymptomatic carriers (ACs), the HTLV-associated diseases

can occur in the minority, approximately 3% develop ATL

(Tajima et al., 1990) and other 4% develop HAM/TSP (Hisada

et al., 2004; Nakagawa et al., 1995; Osame M et al., 1986,

1990). Regarding the inflammatory disorders associated with

HTLV-1 infection, several immunological factors seem to be

involved in the HTLV-1/host interaction influencing the

clinical evolution of HTLV-1-infected subjects from asymp-

tomatic status to HAM/TSP (Starling et al., 2013).

HAM/TSP is a neuroinflammatory disease characterized

by a chronic progressive myelopathy with infiltrating
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mononuclear cells in the area of demyelination and axonal

dystrophy (Cooper et al., 2009). The chronic pro-inflamma-

tory process caused by HTLV-1 is characterized by

spontaneous in vitro T cell proliferation (Lunardi-Iskandar

et al., 1993; Sibon et al., 2006) and by elevated ex vivo

production of IFN-g and TNF-a by the peripheral blood

mononuclear cells (Brito-Melo et al., 2001; Carvalho et al.,

2001). Moreover, IL-2 and metalloproteinases produced by

HTLV-1-infected lymphocytes are potentially inflammatory

and may damage the central nervous system (Biddison et al.,

1997; Kubota et al., 2002; Muniz et al., 2006). The monocytic

cells produce high level of leukotrienes (LTs), mainly Cys

type, which also appear to be involved in the progression of

the HTLV-neurologic disease (Trindade et al., 2012).

While the pro-inflammatory immunological environment in

HAM/TSP was well-scrutinized over the years, little is known

about the predictive value of the inflammatory biomarkers to

distinguish the asymptomatic stage from the early phase of

HAM/TSP. Considering such lack of information on the

diagnostic value of these immunological molecules and their

importance on HTLV-1 infection, this study aimed at

establishing the immunological signature of different clinical

status of the HTLV-1 infection as well as the interaction

between these molecules in the different clinical statuses

evaluated with the ultimate goal of understanding the power of

these molecules as biomarkers of disease morbidity.

Materials and methods

Study population

This was a transversal study comprised of 108 participants

that belong to a cohort study of former blood donors infected

by HTLV, all living in Minas Gerais, Brazil. This cohort has

been followed by the HTLV Interdisciplinary Research Group

(Grupo Interdisciplinar de Pesquisa em HTLV – GIPH) since

1997 concerning the clinical and immunological aspects of

this infection.

Different spectrums of the HTLV-1-associated outcome

other than HAM/TSP were included in this study in order to

identify possible biomarkers that may present prognostic

value. In this respect, HTLV-1 carriers with no symptoms

(AC) and patients with initial symptoms, but without full

clinical diagnosis of HAM/TSP (putative HAM/TSP), were

included in this study.

Participants were diagnosed as infected with HTLV-1, if

they presented positive serology for HTLV-1, both by the

enzyme-linked immunosorbent assay (ELISA) test and

western blot (WB) test. As described in Box 1, 87 HTLV-1

infected patients were categorized according to their clinical

status as ACs (AC¼ 27), patients with putative HTLV-1

associated myelopathy/tropical spastic paraparesis (pHAM/

TSP¼ 32) and patients with defined HAM/TSP (HAM/

TSP¼ 28). In addition, a group of 21 healthy blood donors

with negative HTLV-1 serologic tests (ELISA and WB tests)

were included as an uninfected control group.

All the participants were submitted to serologic screening

for blood-borne pathogens and showed negative serology for

Trypanosoma cruzi, Treponema pallidum, HBV, HCV and

HIV infections.

This study was approved by the Research Ethics

Committee of the Federal University of Minas Gerais,

protocol ETIC 090/07 and the Research Ethics Committee

of Hemominas – protocol n 83/2007. Free and informed

consent forms were obtained from all participants.

Flow cytometry quantitative analysis of serum

chemokines and cytokines

The serum levels of chemokines (CXCL8/IL-8, CCL5/

RANTES, CXCL9/MIG, CCL2/MCP-1, CXCL10/IP-10) and

cytokines (IL-2, IL-4, IL-6, IL-10, TNF-a and IFN-g) were

measured in serum samples from all patients. The samples

were centrifuged at 4000g for 15min at 18 �C, aliquoted and

stored atÿ20 �C until analysis. The serum chemokines and

cytokines were quantified using the Cytometric Bead Array

(CBA) System, Becton Dickinson (BD) according to

Peruhype-Magalhaes et al. (2006). Data acquisition was

achieved by flow cytometry using a FACSCalibur flow

cytometer (Becton Dickinson, La Jolla, CA).

Leukotrienes immunoassay

A specific enzyme-linked immunoassay (Cayman Chemical

Company, Ann Arbor, MI) was used to quantify LTB4 and

CysLT in serum samples as recommended by the manufac-

turer. Serum samples stored at 27 �C were purified on Waters

C18 Sep-Pak cartridges (Waters Associates, Milford, MA),

spun dried in a vacuum centrifuge, and reconstituted in assay

buffer prior to performing the assay.

Analysis of biomarker signatures

The biomarker signature was assembled as previously reported

by Costa-Silva et al. (2014). The frequency of ‘‘high’’ and

‘‘low’’ producers was defined according to the global median

values. The median values of all data set were calculated for

each biomarker in a blind manner prior to assigning the groups.

The median value for each biomarker was utilized as a cut-off

in such a way that patients with results for a particular

biomarker above the global median value were attributed as

high producers, whereas a patient with a result lower than the

global median value was assigned as a low producer. In is

important to consider that the concept of ‘‘high’’ and ‘‘low’’

Box 1. Study population.

Gender Median age

Male Female (Min and max)

Healthy controls (n¼21) 12 (57.1%) 9 (42.9%) 42 (28–60)
Asymtomatic carriers (AC) (n¼27) 13 (48.1%) 14 (51.9%) 52 (19–69)
putative HAM/TSP (pHAM) (n¼32) 8 (25.0%) 24 (75.0%) 51 (31–72)
HAM/TSP (n¼28) 3 (10.7%) 25 (89.3%) 58 (34–72)

2 A. L. B. Starling et al. Biomarkers, Early Online: 1–11
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producer only applies to the present data set and the global

median values should only be taken as a threshold for this

specific study population. Following, the ‘‘ascendant biomar-

ker signature’’ for each group was then assembled and

compared. Additionally, the ‘‘ascendant biomarker signature’’

for each clinical group was also assembled and overlaid to

identify changes in the overall biomarker profile.

Biomarker network analysis

Biomarker networks were assembled to assess the association

between the serum chemokines, leukotrienes and cytokines

for each clinical group. Spearman’s correlation test was

performed to assess the association between serum biomarker

levels (pg/mL). The positive and negative correlations were

significant when p value50.05. Cytoscape (version 2.8, San

Diego, CA), an open source software, was used for composing

networks of interactions among biomolecules in order to

better represent the interactivity among the molecules tested

(Shannon et al., 2003). The biomarker networks were

constructed using three layouts, one for each biomarker

category (chemokine, leukotrienes and cytokine) represented

by globular nodes to underscore the biomarkers with ‘‘High’’

levels (*) as compared to those with ‘‘Low’’ levels (*).

Connecting edges display underscore negative (_ _), moderate

(___) and strong ( ) as proposed by Taylor (1990).

Data analysis

Three sets of innovative/non-conventional data analysis

approaches for observational investigation of the immune

response related to the HTLV-1 infection were applied: (1)

Gehan–Breslow–Wilcoxon test, (2) biomarker signature

analysis, (3) serum biomarker networking and (4) logistic

regression and classification tree. These approaches have

been shown to be relevant to detect, with high sensitivity,

putative changes in the cytokine signatures that are not

detectable by conventional statistical approaches.

Gehan–Breslow–Wilcoxon test

This cumulative frequency analysis is usually employed to

compare survival curves. The method can be applied to

identify relevant differences in the cumulative frequency of

subjects with a given biomarker serum level among groups.

The dashed line underscore when the number of patients

achieved 80% of the sample size and at the significant diffe-

renced at p50.05 highlighted on graphs by brackets between

groups as shown in Figure 1. The Graphpad Prism 5.0 software

(San Diego, CA) was used data analysis and graph arts.

Biomarker signature analysis

The use of this approach to identify relevant differences in the

chemokine/cytokine/LT signatures between the groups has

been adapted from a pioneering study by Costa-Silva et al.

(2014). Initially, serum levels of cytokines/chemokines/

leukotrienes were initially classified as ‘‘low’’ or ‘‘high’’

based on the global median (as the cut-off) as proposed by

Costa-Silva et al. (2014). Each data set was assembled in

gray-scale diagrams in order to calculate the frequency ‘‘high

producers’’ within each clinical group. Relevant frequencies

were considered when above 50% of the study group.

Following, ascendant biomarkers signatures for AC, pHAM

and HAM/TSP were assembled and overlaid to point out for

each clinical groups the biomarkers with relevant ‘‘high’’

levels (�50%) as highlighted by black rectangles. The

Graphpad Prism 5.00 software was used for graph arts.

Serum biomarker network

To evaluate the association between chemokine, leukotrienes

and cytokines, the Spearman’s correlation test and signifi-

cance were calculated and statistically significant differences

were considered if p value50.05. The correlation index (r)

was used to categorize the correlation strength as negative

(r50), moderate (0.364r50.67) and strong (r40.68) as

proposed by Taylor (1990) (Figure 4). The Graphpad Prism

5.0 software was used for data analysis and the Cytoscape

(version 2.8) used for assembling networks.

Logistic regression and classification tree

To establish a relationship between HTLV-1-associated

disease and changes in serum biomarker, we fitted

the stereotype ordinal logistic regression model,

log �j=�AC

� �

¼ �j þ ;j�ixi, where j¼ 2, 3 represents the

pHAM and HAM/TSP classes, respectively, and i represents

the biomarker expression, and estimate the value of � as

proposed by Anderson (1984). We used the distributions

of variables in the control group for categorization of the

biomarkers and log-likelihood method for to test the

coefficient significance. In order to classify the elements of

the sample and to apply the data set in clinical practice we used

discriminant analysis and classification and regression tree

(CART), respectively. A result was considered statistically

significant when the p50.05. We performed the statistical

analyses with the VGAM, Rpart, Rattle, Rpart.plot,

RColorBrewer, Party, Partykit Caret packages of the R

statistical software (Version 2.15.3; http://www.r-project.org).

Results

The concentration of chemokines, leukotrienes and

cytokines is altered in patients with different

clinical status of HTLV-1 infection

Figure 1 shows the results of concentration of chemokines,

leukotrienes and cytokines in the sera of asymptomatic (AC),

putative HAM/TSP (pHAM) and HAM/TSP (HAM/TSP)

patients. The gray rectangles express the concentration

range in healthy blood donors (first and third tertiles). It

was possible to observe that the HAM/TSP group presented

statistically higher levels of CXCL9, CXCL10, CysLT, IL-6,

IFN-g, TNF-a when compared to pHAM. In parallel, the

levels of CysLT, IL-6, IFN-g, TNF-a and IL-4 in HAM/TSP

were significantly higher when compared to AC.

Biomarker cumulative curves analysis demonstrated a

predominant pro-inflammatory profile in

HAM/TSP patients

Figure 2 shows the cumulative frequency (%) of subjects

according to their chemokine, leukotriene and cytokine
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Figure 1. Quantitative biomarker measurements were performed to identify the serum levels of IFN-g, TNF-a, IL-10, IL-6, IL-4, IL-2, CXCL10,
CCL2, CXCL9, CCL5, CXCL8, LTB4 and CysLT as described in the ‘‘Materials and methods’’ section. Results are expressed as box-and-whiskers
plot. Gray rectangles demonstrate the range of concentrations observed in healthy blood donors (first and third quartiles). Statistical differences at
p50.05 are displayed as connecting lines.

4 A. L. B. Starling et al. Biomarkers, Early Online: 1–11
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Figure 2. Cumulative frequency (%) of serum chemokines, leukotrienes and cytokines in HTLV-1 infected patients and healthy controls. HTLV-1
patients were categorized according to their clinical records as asyptomatic carrier (AC¼ ), patients with putative HTLV-1 associated mielopathy
(pHAM¼ ) and patients with HTLV-1 associated mielopathy/tropical spastic paraparesis (HAM/TSP¼*). The results are expressed as cumulative
percentages of subjects with a given serum level of each biomarker expressed as pg/mL. The statistical analysis was carried out by Gehan–Breslow–
Wilcoxon Test and significant differences among groups at p50.05 highlighted by brackets on the graphs. The dashed line underscore when the
number of patients achieved 80% of the sample size.
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sera levels. Data analysis was performed using the

Gehan–Breslow–Wilcoxon test to identify differences

between sets of cumulative curves. Dashed lines were used

to illustrate the maximum sera levels of each biomarker

produced by 80% of individuals in each clinical group. Data

analysis demonstrated that HAM/TSP group has a CXCL10

cumulative curve that is shifted toward higher values as

compared to AC and pHAM groups. No difference was

observed to CXCL8, CCL2, CXCL9 and CCL5 cumulative

curves.

HAM/TSP groups also demonstrated distinct LTB4

cumulative curve shifted to higher values as compared to

AC groups. However, AC clinical group showed CysLT

cumulative curve deviated toward reduced values as com-

pared to HAM/TSP groups. CysLT cumulative curves for

pHAM were also with frequency peak in lower levels of this

molecule as compared to healthy controls.

The analysis of cytokine demonstrated that the inflamma-

tory cytokines IL-6, TNF-a and IFN-g cumulative curves

were significantly shifted toward higher serum levels in

HAM/TSP group as compared to AC and pHAM groups.

Moreover, HAM/TSP also displayed cumulative curve peaks

in higher levels for IL-4 as compared to AC groups. No

difference was observed for IL-2 and IL-10 cumulative

curves.

Enhanced frequency of cytokine and leukotrienes

‘‘high-producers’’ was observed in HAM/TSP patients

Serum levels of cytokines/chemokines/leukotrienes were

initially classified as ‘‘low’’ or ‘‘high’’ based on the global

median (Figure 3). The number of subjects for each biomarker

varied depending on the total number of tested samples

included in each group (Figure 3A). Each data set was

assembled in black and white diagrams in order to calculate

the frequency of ‘‘high producers’’ within each clinical group

(Figure 3A). After establishing the frequency of high

producers for each biomarker, these frequencies were

organized in an ascendant fashion and a curve of biomarkers

was built for each clinical group. In order to select the

relevant biomarkers for each group, it was established a 50%

cut-off corresponding to the frequency of high producers

among groups (Figure 3B). Data analysis demonstrated that

the majority of serum biomarkers tested in HAM/TSP

remained above the 50% threshold (CXCL10, IL-2, CCL2,

TNF-a, IL-10, CXCL9, LTB4, IFN-g, IL-4, IL-6 and CysLT),

while only few of them were above this threshold in AC

(CXCL8 and CXCL10) and pHAM (IL-2, CCL2 and CCL5)

curves. Below the ascendant curve, it is highlighted in black

the biomarkers which were above 50% (Figure 3B).

A strong connection of the pro-inflammatory/

regulatory network is observed in AC, whereas

CysLT seems to interfere in the IL-4/IL-10

regulatory axis in HAM/TSP patients

Aiming at accessing the dynamics of interaction between

chemokines, leukotrienes and cytokines in HTLV-1 infected

patients; we have assembled the biomarkers network based on

the significant Spearman correlation indices. Black circles

refer to elevated frequency of high producers of this

Figure 3. Establishment of serum biomarkers ascendant curve of the
frequency of ‘‘high producers’’ in HTLV-1 infected patients.
Quantitative biomarker measurements were performed to identify the
serum levels of IFN-g, TNF-a, IL-10, IL-6, IL-4, IL-2, CXCL10, CCL2,
CXCL9, CCL5, CXCL8, LTB4 and CysLT. (A) Black-and-white
diagrams were used to assemble to calculate the final frequency of
‘‘high producers’’ for each clinical group. Relevant frequencies of
‘‘higher producers’’ (�50%) are highlighted by underline format.
Subjects were categorized as low (white) or high (black) producers
based on their serum biomarker level, according the global data median
distribution. The HTLV-1 patients were categorized according to their
clinical records as asyptomatic carrier (AC), patients with putative
HTLV-1 Associated Mielopathy (pHAM) and patients with HTLV-1
Associated Mielopathy/Tropical Spastic Paraparesis (HAM/TSP). ND,
not determined levels. (B) Overlay of ascendant biomarkers signatures of
AC( ), pHAM( ), HAM (*) was assembled and the biomarkers with
frequency higher or equal to the 50th percentile are highlighted by black
rectangles in the panel below the curve.

6 A. L. B. Starling et al. Biomarkers, Early Online: 1–11
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biomarker (Figure 4). AC presented a strongly connected pro-

inflammatory/regulatory cytokine network with IL-4 and IL-

10 representing central hinges, as demonstrated by the axes

IL-6/IL-4/IL-2 and IL-6/IL-10/IL-2 (Figure 4A). No partici-

pation of leukotrienes CysLT and LTB4 was observed in the

AC or pHAM networks (Figure 4B).

In HAM/TSP patients, there was a clear up-regulation of

pro-inflammatory cytokines, including CysLT, LTB4, IL-6,

TNF-a and IFN-g with a relevant bridge composed of a strong

correlation between two essential mediators such as IFN-g

and IL-2. Although there was a parallel increase in the

frequency of high serum levels of IL-4 and IL-10, a clear arm

of CysLT counterbalanced the putative regulatory activity of

IL-4 and IL-10. Moreover, a complementary arm between

CysLT and TNF-a further favored a shift of the immune

response toward a predominant pro-inflammatory response in

HAM/TSP patients (Figure 4C).

An additional analysis of biomarker connections revealed

that despite the differences in the magnitude and intensity of

the correlations, some preserved axes of pro-inflammatory/

regulatory cytokines such as IL-6/IL-4/IL-10/IL-2/IFN-g

and chemokines CXCL10/CXCL9/CCL2/CXCL8 could be

observed in all groups (Figure 4). This analysis showed that,

independently of the HTLV-clinical status, there was a general

pro-inflammatory/regulatory axis composed of IL-6/TNF-a

counterbalanced by IL-10 and IL-4 with contributions of

IFN-g and IL-2 (Figure 4). The hallmark of HAM/TSP-

immunological profile was the inclusion on an additional link

mediated by CysLT with TNF-a, IL-10 and IL-4.

Interestingly, a progressive loss of links between pairs of

chemokines can be observed from AC to HAM/TSP clinical

groups.

Establishing an algorithm of serum biomarkers for

follow up/diagnosis of disease morbidity

The logistic regression analysis selected IFN-g, TNF-a, IL-

10, IL-6, IL-4 and CysLT biomarkers for modeling (p50.25).

Table 1 summarizes the results of first stereotype regression

analysis. Among these selected biomarkers, the best settings

were with IL-6 and CysLT biomarkers. According to the

log �j=�AC

� �

¼ �j þ ;j�ixi, j¼1, 2 and i¼IL-6 and CysLT

model (Anderson, 1984) with identifiability constrains

;HAM=TSP ¼ 1, ;AC ¼ 0
ÿ �

, we estimate ;pHAM ¼ 0:70
and �i values, and set models log �HAM=TSP=�AC

� �

¼
2:34þ ÿ0:83ð ÞxIL6 þ ÿ1:06ð ÞxCYST for HAM/TSP

and log �pHAM=�AC

� �

¼ 2:77þ ÿ0:83ð ÞxIL6 þ ÿ1:06ð Þ xCYST
for pHAM. The model log-likelihood wasÿ81.92 on 168

degrees of freedom. Deviance residuals of model indicated

general goodness of fit of the model to the data obtained.

Table 2 summarizes the results of final stereotype regression

analysis.

Figure 4. Biomarker networks in AC, pHAM and HAM/TSP. (A) Chemokine, leukotriene and cytokine nodes were assembled to point out significant
differences in the serum levels (low¼* and high¼* producers) as well as the biomarkers correlation indexes among groups (negative _ _; moderate
____ and strong positive correlation).
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From the final model above, we calculated the odds ratio

(OR) of the IL-6 and CysLT predictors by the e;� formula

(Lunt, 2004). Table 3 represents the OR values for the

selected predictors, with confidence intervals and values p.

The results indicate substantial decreases in pHAM and

HAM/TSP odds of the development related to both IL-6 as

CysLT, suggesting a protective role of these biomarkers.

The results of the discriminant analysis of predictors

selected by logistic regression are shown in Table 4. Sixteen

elements of pHAM group and 14 elements of HAM/TSP

group were classified incorrectly, resulting in the following

percentage of correct answers: 50% for pHAM group and 57%

for HAM/TSP group. These hit ratios indicate limited quality

of the discriminant function of IFN-g, TNF-a, IL-10, IL-6,

IL-4 and CysLT predictors between pHAM and HAM/TSP

groups.

The method CART proposed for clinical practice classi-

fication of the IFN-g, TNF-a, IL-10, IL-6, IL-4 and CysLT

biomarkers created a rule among these predictors to identify

the three clinical groups of HTLV disease: AC, pHAM and

HAM/TSP (Figure 5). The first initialization variable (‘‘root

node’’) was CysLT. Using the method of CART, it was

possible to propose a classification for each of the biomarkers,

meaning that a rule was created to identify the three clinical

groups of HTLV disease: AC, pHAM and HAM/TSP. If we

count the number of patients with categorized values of

CysLT, which are less than 1.5 and at the same time have IL-6

less than 0.5, we will find 11 AC patients. However, if we

count the number of patients with categorized values of

CysLT, which are greater than 1.5 and at the same time have

IFN-g greater than 0.5, we will find 18 HAM/TSP patients.

Between the extremes AC and HAM/TSP shown in Figure 5,

combinations of values of TNF-a and IL-4 biomarkers greater

than 2.5 and 0.5, respectively, with IL-6 values greater than

0.5 favored the pHAM group.

Discussion

During the chronic infection by HTLV-1, the virus induces a

strong activation and proliferation of many subsets of cells,

especially T cells. HTLV-1 preferentially persists in the host

by clonal expansion of CD4+ T-cells of the infected host and

by viral synapses (Sibon et al., 2006; Umeki et al., 2009).

There are evidences that the immunological profile of HAM/

TSP patients is composed by a robust pro-inflammatory

response (Zane et al., 2009), contrasting with ATL patients.

Increased levels of Type-1/2 cytokines such as IFN-g, TNF-a,

IL-1b, IL-2, IL-6, IL-9 and IL-13 are found in HAM/TSP

(Bangham & Osame, 2005; Goon et al., 2002, 2003; Jacobson

et al., 1990; Montanheiro et al., 2009), whereas asymptomatic

HTLV-1 carriers display a balanced response characterized by

high frequency of IL-10 secreted by CD4+ and CD8+ T-cells

(Brito-Melo et al., 2001).

Doubtless, there is an essential role of pro-inflammatory

and regulatory mediators involved in the progression of

disease as well as a protection against the development of

inflammatory symptoms. Even though the immunological

status of HAM/TSP and the AC have been scrutinized, some

patients that have borderline diagnosis are difficult to

Table 4. Summary of quadratic discriminant analysis between HTLV
disease groups for predictors IFN, TNF, IL10, IL6, IL4 and CYST.

Put into
True group

Group AS pHAM HAM/TSP

Classification
AS 22 10 8
pHAM 3 16 4
HAM/TSP 2 6 16
Total N 27 32 28
N correct 22 16 16
Proportion 0.815 0.500 0.571

N¼87; N correct¼ 54; proportion correct¼ 0.621

Classification with cross-validation
AS 19 12 9
pHAM 4 11 6
HAM/TSP 4 9 13
Total N 27 32 28
N correct 19 11 13
Proportion 0.704 0.344 0.464

N¼87; N correct¼ 43; proportion correct¼ 0.494

Table 1. Estimated coefficients, standard errors, z-scores, and two-tailed
p-values for the fitted stereotype regression model.

Coefficients Estimate SE z-Score p Value

;AC 0a – – –
;pHAM 0.80 0.18 4.38 50.001
;HAM=TSP 1a – – –
�pHAM 2.77 0.90 3.07 0.0002
�HAM=TSP 2.57 0.87 2.95 0.0003
�IFN ÿ0.46 0.29 ÿ1.56 0.1184
�TNF ÿ0.15 0.30 ÿ0.51 0.6074
�IL10 0.63 0.41 1.54 0.1232
�IL6 ÿ0.70 0.38 ÿ1.83 0.0667
�IL4 ÿ0.27 0.29 ÿ0.92 0.3572
�CYST ÿ1.04 0.32 ÿ3.19 0.0001
Log-likelihood:ÿ79.82 on 164 degrees of freedom

SE, standard error.
aIdentifiability constraints.

Table 2. Estimated coefficients, standard errors, z-scores, and two-tailed
p-values for the final fitted stereotype regression model.

Coefficients Estimate SE z-Score p Value

;AC 0a – – –
;pHAM 0.70 0.17 3.94 50.0001
;HAM=TSP 1a – – –
�pHAM 2.77 0.82 3.37 50.0001
�HAM=TSP 2.34 0.82 2.82 0.0004
�IL6 ÿ0.83 0.30 ÿ2.75 0.0007
�CYST ÿ1.06 0.32 ÿ3.33 50.0001
Log-likelihood: -81.92 on 168 degrees of freedom

SE, standard error.
aIdentifiability constraints proposed by Anderson (1984).

Table 3. Results of the logistic regression analysis involving HTLV
disease and IL6 and CYST predictors.

OR pHAM OR HAM/TSP

IL-6 0.55 0.43
CysLT 0.47 0.34
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characterize by the laboratorial methods currently available.

The HTLV-1 proviral load has been largely utilized as a

prognostic laboratorial biomarker, however, HTLV-1-infected

individuals without myelopathy can present high HTLV-1

proviral load, which prevents the use of this molecular test

from being the gold standard to define HAM/TSP (Taylor,

1998). In addition, despite the clear evidence of a vigorous

inflammatory response in HAM/TSP, there is no clear

standardization of the immunological markers that are

suitable for the follow-up of either HTLV-1-ACs or putative

HAM/TSP individuals.

In the present study, the cytokine, chemokine and

leukotriene secretion profile of healthy blood donors, ACs,

putative HAM/TSP and HAM/TSP were evaluated and

refined diagnostic measurements were performed in order to

establish an immunological signature that would lead to the

design of a panel of markers for monitoring disease

progression. Networks composed of the correlations among

cytokines, chemokines and leukotrienes were built for each

group in order to verify the differences in the interactions. In

addition, the CARTs proposed for clinical practice allowed

the construction of an algorithm to discriminate AC, pHAM

and HAM/TSP individuals with the elected biomarkers: IFN-

g, TNF-a, IL-10, IL-6, IL-4 and CysLT. To the best of our

knowledge, this is the first proposal of an algorithm based on

serum biomarkers applied to the clinical management of

HTLV-1-infected people.

The results obtained in the present study confirm previous

results from other cohorts (Muniz et al., 2006), showing that

there is a strong pro-inflammatory response in HAM/TSP.

The secretion profile of inflammatory cells produced by

HAM/TSP group was established in order to create an

immunological signature of these subjects.

The cumulative frequency of the serum concentration of

IL-6, TNF-a, IFN-g and CXCL10 was higher in the HAM/

TSP when compared to the AC and pHAM groups. A higher

cumulative frequency of IL-4, LTB4 and CysLT in the HAM/

TSP when compared to AC group was observed. The

immunological signature delineated for the HAM/TSP

group was mostly composed by increased secretion of the

cytokines IL-4, IL-6, IFN-g, TNF-a, IL-10, and also LTB4

and CysLT, which supports the present findings obtained by

the cumulative frequency of the serum concentration of these

molecules.

These cytokines have important pro-inflammatory activity

and performs a central role in the coordination of the

inflammatory response. Moreover, classical studies have

already demonstrated that higher concentration of IL-6 and

TNF-a can be observed in HTLV-1-infected individuals

(Jeffery et al., 1999; Lal & Rudolph, 1991).

We have found that IL-4, a cytokine involved in controlling

inflammation, was higher in the HAM/TSP group. This

finding is not in accordance with previous studies, which

showed that HAM/TSP evolves to a prominent and uncon-

trolled pro-inflammatory process (Brito-Melo et al., 2001;

Jeffery et al., 1999; Nishimoto et al., 1990). The serum

concentration of IL-10, another regulatory cytokine, was high

in HAM/TSP group as well as in the other HTLV-1 groups. It

is known that the HTLV-1-ACs have an immune-modulated

response that controls inflammation (Starling et al., 2013).

Maybe, the HAM/TSP-signature of pro-inflammatory profile

associated to IL-4 and IL-10 is yet an attempt of the

Figure 5. Classification and regression trees
(CARTs) of the selected biomarkers: IFN-g,
TNF-a, IL-10, IL-6, IL-4 and also the
leukotriene CysLT in the identification of
AC, pHAM and HAM/TSP groups.
N¼sample size; the number on top corre-
spond to odds ratio and the percentage
corresponds to the group frequency in that
condition.
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immunological system of keeping the control of the

inflammation.

When taking into consideration the interaction between

molecules, the presence of CysLT reinforces the role of the

inflammatory axis since this molecule is involved in events

such as increased vascular permeability and cell trafficking.

Interestingly, the pHAM group demonstrates an intermediate

profile between AC and HAM/TSP. Even without strong

correlations and leukotriene interactions, the increased

production of RANTES and IL-2 in this group may suggest

a possible switching to a pro-inflammatory profile.

The analysis of the HTLV-1 groups with and without

myelopathy clarified the essential role of pro-inflammatory

and regulators mediators involved in the control of viral load

and progression of the disease. Besides, the presence of

CysLT composing the inflammatory net may contribute to the

events such as increased vascular permeability and cell

trafficking. Considering that leukotrienes and TNF-a are

key biomolecules in the development of the inflammatory

process that leads to HAM/TSP as identified in this study,

it is essential to consider the possibility of testing the

selective leukotriene receptor antagonists and anti-TNF-a

antiboby therapy for the treatment of patients in future

larger studies.

The present results demonstrated that studying the

cytokine microenvironment is important to the analysis of

the balance of proinflammatory/regulatory biomarkers. The

correlation among these mediators brought more information

about the role of this network of molecules analyzed as

possible biomarkers of neurological disease progression

during HTLV-1 infection.

Conclusion

The molecules IFN-g, TNF-a, IL-10, IL-6, IL-4 and also the

leukotriene cysteinyl leukotrienes are demonstrated as

important biomarkers of HAM/TSP and should be taken

together as a combined algorithm to follow and identify the

HTLV-1-AC that may evolve to neurologic damage.
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