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Abstract: Lung cancer is a leading cause of global cancer deaths. Na/K-ATPase has been studied
as a target for cancer treatment. Cardiotonic steroids (CS) trigger intracellular signalling upon
binding to Na/K-ATPase. Normal lung and tumour cells frequently express different pump isoforms.
Thus, Na/K-ATPase is a powerful target for lung cancer treatment. Drugs targeting Na/K-ATPase
may induce apoptosis and autophagy in transformed cells. We argue that Na/K-ATPase has a role as
a potential target in chemotherapy in lung cancer treatment. We discuss the effects of Na/K-ATPase
ligands and molecular pathways inducing deleterious effects on lung cancer cells, especially those
leading to apoptosis and autophagy.
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1. Introduction

Many new cancer treatments have arisen, but the search for a suitable drug that acts on cancers
that are chemo-resistant to common cancer drugs remains a huge challenge. Lung cancer is one of
the most common cancers and remains a leading cause of global cancer deaths. The highly invasive
phenotype, rapid progression, and resistance to chemotherapy of lung cancer contribute to its poor
prognosis [1]. In 1957, when Skou described Na/K-ATPase and its primary function, he probably
could not imagine that years later this pump would be shown to play a role in cell signalling and
be considered a target for cancer treatment. Epidemiological data indicate that samples of breast
cancer tissue from patients with congestive heart failure treated with cardiac glycosides exhibit more
benign features than tissue samples from control cancer patients who were not treated with cardiac
glycosides [2]. A recent systematic review, however, reported a 34% increase in breast cancer risk
with the use of cardiac glycosides, but it is unclear whether this association reflects a confounding or
causal relationship [3]. The anticancer effects of cardiac glycosides have also been examined in cancers
other than breast cancer, including leukaemia and tumours of the kidney/urinary tract [4]. In addition,
the use of digoxin can prevent prostate cancer [4].

Cardiotonic steroids (CS), when bound to Na/K-ATPase, trigger several cell-signalling pathways,
resulting in the proliferation, differentiation and promotion of autophagy or apoptosis. These effects
vary depending on the cell type as well as the type and concentration of CS. In addition, through
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enzyme inhibition, CS may also elicit changes in the response of kinases to changes in ATP and
calcium. Interestingly, normal and tumour cells express different pump isoforms, and Na/K-ATPase
acts as a CS receptor. Thus, the pump is a powerful target for antitumor molecules, and molecules
targeting Na/K-ATPase are currently being tested in clinical trials.

Na/K-ATPase has been studied as a target for cancer treatment. CS trigger intracellular signalling
upon binding to Na/K-ATPase. Thus, Na/K-ATPase is a powerful target for lung cancer treatment.
We argue that Na/K-ATPase has a role as a potential target in chemotherapy in lung cancer treatment.
Here, we discuss the effects of Na/K-ATPase ligands and the molecular pathways inducing deleterious
effects on lung cancer cells, especially those leading to apoptosis and autophagy.

2. Lung Cancer

Lung cancer is the major cause of cancer deaths around the world. In the USA, it is estimated
that lung cancer was responsible for approximately 27% of cancer deaths in 2016 [5]. The number
of Americans who die each year from lung cancer is approximately equal to the number of annual
deaths due to prostate, breast, and colon cancer combined [6]. There are two main types of lung cancer:
non-small and small cell lung carcinomas, which are pathologically and clinically distinct. The most
common is non-small cell lung cancer (NSCLC), which represents more than 80% of cases [7,8].

NSCLC is commonly subdivided into three subtypes: squamous cell carcinoma (SQCC), large cell
carcinoma (LCLC) and adenocarcinoma. Adenocarcinoma is the most common subtype, representing
more than 40% of NSCLC cases. In 2013, a new classification of only two types of NSCLC was proposed:
adenocarcinoma and neuroendocrine tumour, abolishing the LCLC subtype [9].

A high cancer rate of adenocarcinoma has been described in both sexes, especially in women,
and is associated with lifestyle [5,10,11]. Studies have shown that the greatest cause of adenocarcinoma
is not smoking but ethnicity and genetic susceptibility. Smoking is usually associated with small cell
lung cancer (SCLC) and squamous-cell carcinoma [12].

NSCLC is a heterogeneous cancer with cellular and genetic diversity. Molecular genotyping
of several samples of adenocarcinoma has revealed targets for therapy, and the detection of these
alterations could also be predictive markers for therapeutic success. Mutations in epidermal growth
factor receptor (EGFR) or rearrangements in the anaplastic lymphoma kinase (ALK) gene are the
most common findings—almost 25% of adenocarcinoma cases. These alterations generally cause
increased activity of EGF and ALK. However, the most observed change in NSCLC is mutation of the
tumour suppressor TP53, which is not a treatment target. Mutations in other tumour suppressor genes
such as Liver Kinase B1/Serine Threonine Kinase 11 (LKB1/STK11), neurofibromatosis type 1 (NF1),
cyclin-dependent kinase Inhibitor 2A (CDKN2A), SMARCA4 and kelch-like enoyl-CoA hydratase
associated protein (KEAP) that cause loss of function also occur [13]. The heterogeneity of mutations
makes treatment difficult due to the frequent occurrence of resistance. The high mortality rate is
generally related to late diagnosis and acquisition of chemo-resistance [14]. Until a few years ago,
treatment essentially comprised chemotherapy and drugs combined with platinum, with a small
improvement in quality of life and a high mortality rate. New therapies have emerged based on
inhibitors of EGFR, such as erlotinib, gefitinib, or afatinib. Approximately 25%–30% of NSCLC
have Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations, mostly adenocarcinomas.
However, no drug targeting KRAS has been developed [15].

Clinical treatment has also been based on minor genetic alterations in NSCLC tumours, such as
in ROS1, RET, and MET [15–18]. Acquired resistance to chemotherapy remains a challenge in the
development of an effective treatment. In this context, Na/K-ATPase has emerged as an attractive
target for anticancer therapy.

3. Na/K-ATPase

Na/K-ATPase is a heteromeric protein complex located on the plasma membrane of eukaryotic
cells that uses ATP to transport sodium ions out of the cell and potassium ions into cells [19–23].
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Na/K-ATPase is a member of the P-type ATPase class, with intermediate participation of the
pump in the phosphorylated form. During phosphorylation, the protein undergoes a conformational
transition from helix to beta sheet [24]. This transition results in the phosphorylation of the enzyme
by ATP in the presence of Mg2+ and Na+ ions and dephosphorylation in the presence of K+

ions [19,25]. Na/K-ATPase functions in cellular electrochemical gradient maintenance, osmotic balance,
conductivity in nerves and muscles, cell adhesion and motility [23,26,27], and triggering of intracellular
signalling [28]. Na/K-ATPase is composed of three subunits, α-subunit, β-subunit and γ-subunit.
The α-subunit has four isoforms (α1, α2, α3 and α4), the beta subunit has three isoforms (β1, β2 and β3),
and the gamma subunit has seven isoforms (FXYD1–7) [29,30]. The combination of isoforms most
common in tissues is α1β1; the diverse distribution of different subunits in organs and tissues has
been reviewed in Mijatovic et al. 2012 [31] (Figure 1).
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Na+ and K+ ions are all located in the α-subunit, which is considered the catalytic subunit [19,20]. The 
four α-subunit isoforms are expressed differently in different tissues throughout the development of 
the organism. The α1-isoform is expressed in several cell types and is predominant in the kidneys 
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Figure 1. Scheme of the insertion of Na/K-ATPase into the plasma membrane. Ionic transport is
accomplished by ATP hydrolysis and also depends on the physiological concentrations of the ions inside
and outside the cell. The α-subunits (with sites for Na, K, ATP, and cardiac glycosides: OUA (ouabain)),
β-subunits (glycoprotein) and γ subunits are shown.

3.1. α-Subunit

The α-subunit consists of 10 transmembrane helices (M1–M10) with a total molecular mass of
110 kD. The N- and C-termini are located in the cytosol, and the majority of the segments are located
in the intracellular space [32,33]. The binding sites for ATP and Mg2+, cardiac glycosides as well as
Na+ and K+ ions are all located in the α-subunit, which is considered the catalytic subunit [19,20].
The four α-subunit isoforms are expressed differently in different tissues throughout the development
of the organism. The α1-isoform is expressed in several cell types and is predominant in the kidneys
and liver. Importantly, the α1-subunit is up-regulated in certain cancer types, including NSCLC [34],
renal cell carcinoma [35], glioma [36] and melanoma [37]. The α2-isoform is present mostly in the
brain, heart muscle, and skeletal muscle. The α3-isoform, by contrast, is found in the central nervous
system, cardiac muscle, skeletal muscle and placental tissue, whereas the α4-isoform is restricted to
the testes [29,33,38].

3.2. β-Subunit

The β-subunit is formed by a transmembrane segment with a molecular weight of 55 kD.
The N-terminus is located in the cytoplasm, whereas the C-terminus (glycosylated) is located in
the extracellular medium [33]. This glycoprotein is considered regulatory and is involved in the
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stabilization of the enzymatic complex in the plasma membrane, the affinity of the pump for potassium
and sodium ions, and adhesion processes through E-cadherin [39–42]. Three β-subunit isoforms
(β1, β2 and β3) have been identified. Isoforms β1 and β2 are present predominantly in mammalian
cells. The β1-isoform is distributed throughout all tissues, whereas the β2-isoform is concentrated
in nervous tissue, heart, cartilage and erythrocytes. The β3-isoform is found predominantly in nerve
tissue, as well as in skeletal muscle and the lung [29,33,34].

3.3. γ-Subunit

The γ-subunit has only one transmembrane domain and a molecular mass of 15 kD.
Seven isoforms of the γ-subunit have been described (FXYD1–7) [29,30,42]. The γ-subunit is
a proteolipid present in different tissues such as kidney tissues, cardiac tissues and skeletal muscle
and belongs to the FXYD family. The seven isoforms differ in the amino acid residues in the N-terminal
domain [29,42]. Its function seems to be associated with the modulation of the enzyme affinity for
different ligands, with a direct and positive effect on the maximum rate of adenosine triphosphate (ATP)
hydrolysis, and thus the γ-subunit is considered regulatory in addition to the β-subunit (Figure 2) [43,44].
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of a catalytic α-subunit (blue), a glycosylated β-subunit (grey), and, in some tissues, a single
transmembrane span containing an extracellular invariant FXYD sequence (green).

4. Na/K-ATPase: Expression in Cancer and Potential of Cardiotonic Steroids

Several changes in the expression of Na/K-ATPase have been observed in cancer cells, such as
elevation of activity during the transformation of malignant cells. Roles in cell survival, proliferation,
adhesion and migration have also been described [45–47]. In this context, variations in the expression
of the different subunits of the enzyme compared to normal tissues have been described, including
in renal carcinoma cells, NSCLC, and glioma, where there is an elevation of α1-isoform expression.
In colon carcinoma, there is an elevation of the α3-isoform, and in prostate carcinoma, there is a decrease
in α1-isoform expression (reviewed in [31]).

Although the distribution of the different isoforms under pathological conditions such as cancer
is not completely clear, the α-subunit is considered a target for new anticancer therapies. In general,
in tumours, the α1-isoform is highly expressed in the early stages of tumorigenesis, with low expression
in later stages in favour of an elevation of α3-isoform expression [42,48,49]. Thus, the pump may have
a role not only as a biological marker but also as a therapeutic target for cancer. In this context,
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studies have evaluated the therapeutic potential of Na/K-ATPase modulators, such as cardiotonic
steroids. Different molecules such as ouabain, exhibit activity against numerous types of cancer cells
acting on the induction of apoptosis, cell cycle arrest or even autophagy [42,50,51].

5. Cardiotonic Steroids

Cardiac glycosides or cardiotonic steroids (CS) are a group of compounds isolated from plants
and animals. The main structural feature of CS is the central steroid nucleus, in which an unsaturated
lactone ring replaces the D-ring at C-17. CS are classified as cardenolides and bufadienolides depending
on the nature of the lactone. The most well-known CS are the cardenolides digoxin, digitoxin, ouabain
and oleandrin and the bufadienolides bufalin and hellebrin. These CS have been used for years in
the treatment of heart failure and arrhythmia [34,52,53]. Na/K-ATPase inhibition causes an elevation
of intracellular sodium, activating the Na+/Ca2+-exchanger and consequently resulting in increased
intracellular calcium and increased cardiac muscle contractility [54]. Endogenously produced CS
have been detected in the blood, adrenal gland, and hypothalamus but do not inhibit Na/K-ATPase;
these endogenous CS are associated with cardiovascular and renal disease [55,56]. The stability of the
CS complex with a Na/K-ATPase and the inhibitor potency depends on the stereochemistry of the
sugar [20,38]. Most cardenolides show higher affinity for the α2- and α3-isoforms [20]. Bufadienolides,
however, have a higher affinity for the α1-isoform.

The effects of CS in cancer cells include but are not limited to apoptosis sensitization and anoikis,
affecting chemo-resistant cells as well [45,57].

Thus, CS have been considered excellent anticancer substances, even at very low concentrations.
Drugs such as huachansu, digoxin, and Anvirzel are in phase II trials as anticancer agents for various
types of cancer, including NSCLC. They may represent an alternative for tumours resistant to the usual
chemotherapeutic agents. Several mechanisms of CS-mediated anticancer activity were postulated
by Mijatovic et al. in 2008 [58]. The two classes of CS and their mechanisms of action are briefly
discussed below.

5.1. Cardenolides

Ouabain, one of the most studied CS, was isolated from the plant Strophanthus gratus. Like other CS,
it inhibits the Na/K-ATPase. The binding site for ouabain is located in the extracellular portion of the
pump in the α subunit [59] and is the same for other CS such as digoxin [20] (Figure 1).

Analysis of Na/K-ATPase from shark rectal gland crystallized with K+ and ouabain revealed the
interaction of an arginine residue (R887) with the rhamnose moiety of ouabain [60]. The R887 resides
within the L7/8 loop of the shark α-subunit and is homologous to R886 of the rat α-subunit. Mutation
of D885 and D886 to arginine residues greatly reduces ouabain binding ability [61], suggesting that the
L7/8 loop is directly involved in the binding of CS [62].

Ouabain-like substances that act as hormonal signals in response to endogenous or exogenous stimuli
such as stress, hypertension or even sports have been identified [53]. As an anticancer substance, ouabain
has been shown to inhibit proliferation and cell migration and is capable of sensitizing chemo-resistant
cells [16,63]. Ouabain presents great potential in neuroblastomas and is indicated for use in conjunction
with chemotherapeutic agents for its ability to suppress tumour or cell growth by quiescence [64].

Extracted from the Nerium oleander plant, oleandrin is considered less toxic than but as potent
as ouabain and digoxin [38]. As an inhibitor of Na/K-ATPase, oleandrin has higher affinity for the
α3-isoform than the α1-isoform [65].

Digitoxin is a cardiotonic steroid isolated from the flower of Digitalis purpurea. Along with digoxin,
digitoxin is one of the most used drugs for the treatment of heart failure and has a more stable
profile [38]. Digoxin binds the α subunit in the αM4 domain and has higher affinity for the α2- and
α3-isoforms [20]. Digitoxin, similar to digoxin and other cardiotonic steroids, has a strong antitumor
effect, inhibiting the growth and proliferation of these cells as well as inducing apoptosis [66,67].
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In a phase II trial, Kayali et al. 2011 showed that digoxin with erlotinib does not act in synergism
on EGFR, indicating the need to identify more specific targets and chemotherapeutic combinations
that increase the potential of digoxin in patients with NSCLC [68].

In addition to their potential in anticancer therapy, lung cancer, pancreatic cancer, and
breast cancer, the cardiotoxicity of digitoxin and other cardenolides should be considered [69].
The concentrations of CS used in anticancer therapy and cardiovascular disease treatment have
been investigated. At toxic doses, Na/K-ATPase inhibition is elevated (greater than 60%), causing Na+

and Ca2+ levels to increase and resulting in cardiac arrhythmia [70]. Consequently, therapeutic CS
concentrations are restricted, and there is a search to reduce these toxic effects, such as UNBS1450 [71]
(a hemi-synthetic derivative of 2′′-oxovoruscharin with trans-trans-cis steroid rings), in which molecular
changes resulted in a decrease in cardiotoxicity and greater inhibitory capacity compared to classic CS [34].

5.2. Bufadienolides

The name bufadienolide is derived from the toad genus Bufo, which produces this class of
substances used for many years in Chinese medicine for the treatment of cardiac disorders [72].
CS, as well as bufalin, exhibit anticancer activity mediated by the induction of apoptosis and autophagy
in several tumours, such as glioma and hepatocellular carcinoma [73,74].
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Figure 3. Functions of Na/K-ATPase enzymes in normal and cancer cells and their interaction with
cardiotonic steroids. In normal cells, this pump is responsible for several functions, such as maintenance
of ion homeostasis; maintenance of epithelial cell polarity; participation in the process of cell adhesion;
control of cell differentiation and proliferation and maintenance of muscular tone. Its interaction
with cardiotonic steroids results in enzymatic inhibition; Ca2+ intracellular accumulation; activation
of caspases; control of muscle tone; cell growth, proliferation, adhesion and survival via signalling
pathways. In cancer cells, there are several changes in Na/K-ATPase that result in ionic disorder;
enzymatic down- or up-regulation of expression; loss of epithelial cell polarity and cell adhesion;
changes in cell differentiation and proliferation. Interaction with cardiotonic steroids may result in
inhibition; activation of protein cascade; apoptosis; autophagy; production of inflammatory mediators;
reactive oxygen species (ROS) generation and cell cycle arrest. Most of these phenomena are linked to
intracellular signalling mediated by the enzyme.
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Hellebrin is a bufadienolide extracted from the plant Helleborus niger that exhibits greater affinity
to the α1-isoform. It exhibits antitumor potential against cells that present MDR (multiple drug
resistance) [75].

Bufadienolides exhibit antiproliferative behaviour in several human cancer cell lines by inducing
death and cell cycle arrest, indicating its potential for use in anticancer therapy with effects similar to
those of cardenolides.

Figure 3 summarizes the functions of Na/K-ATPase and the effects of CS on normal and cancer
cells (Figure 3).

6. Role of Na/K-ATPase in the Lung

Basolaterally located Na/K-ATPase together with the apically located epithelial sodium channel
(ENaC) in epithelial lung cells are responsible for alveolar fluid clearance (AFC). AFC is driven
by sodium transport across the airway epithelium, with removal of water from the alveoli to the
bloodstream. Chloride transport via the cystic fibrosis transmembrane conductance regulator (CFTR)
is also important for AFC [76]. Water crosses the alveolar epithelium either paracellularly via tight
junctions or transcellularly via aquaporins (AQP). AQP5-deficient mice (Figure 4A) have significantly
decreased airway-capillary water permeability [77]. Endogenous acetylcholine increases AFC via the
activation of alveolar epithelial Na/K-ATPase [78] (Figure 4A).

Impairment of the enzyme Na/K-ATPase during acute respiratory distress syndrome (ARDS) not
only prevents resolution of lung oedema but also intensifies its formation. Thus, sodium transport
and oedema clearance are associated with better outcomes in patients with sepsis and ARDS [76].
Ouabain inhibits AFC in isolated, perfused fluid-filled mouse lungs [79] and in animals in vivo [80–84].
The overexpression of FXYD1 in the lungs of ARDS patients may limit Na/K-ATPase activity and
contribute to oedema persistence [85]. Therefore, molecules targeting Na/K-ATPase have toxic effects
on the heart and likely in the lungs as well because of the narrow therapeutic window (0.5–0.9 ng/mL
for digoxin) [86]; these molecules should therefore be used with caution. For instance, renal disease
prolongs the half-life of digoxin, with elevation of its serum concentration [87]. This elevation causes
an array of clinical side effects such as nausea and vomiting, visual disturbances and disorientation,
and arrhythmia [86]. Mutations and fluctuations in the Na/K-ATPase are directly linked to certain
mechanisms in several diseases, including diabetes mellitus and Alzheimer’s disease. Alterations
in the enzyme may increase cancer cell growth. The cellular processes and pathways influenced by
these effects include but are not limited to MAPK, PI3K, Akt/mTOR, and epigenetic methylation,
as reviewed by Durlacher et al. 2015 [88,89]. Pump internalization in response to stimuli also alters
its function. Hypercapnia leads to JNK-induced phosphorylation of LMO7b, a scaffolding protein,
which promotes the endocytosis of Na/K-ATPase in alveolar epithelial cells [89].

Diverse proteins interact with Na/K-ATPase and trigger downstream events. The α-subunit of
Na/K-ATPase serves as an anchoring platform for protein–protein interactions [90].

Low concentrations of CS may generate a cellular signal by two different mechanisms. The first
mechanism involves the so-called plasmERosome. The α2- or α3-isoform of the pump in a specific
plasma membrane raft located near the membranes of the sarcoplasmic/endoplasmic reticulum
(SR/ER) is inhibited in smooth muscle cells, hippocampal neurons, or astrocytes of rodents [91].
This inhibition of the α2- or α3-isoform results in a transient increase in the sub-plasmalemmal sodium
concentration, which activates NCX1 and leads to a small, local increase in calcium concentration.
This is followed by the release of Ca2+ from the SR/ER, which triggers an intracellular signalling
cascade, including the induction of smooth muscle cell contraction, which is postulated to be one of
the causes of essential hypertension [92].
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Figure 4. Structure of the alveolar–capillary barrier in the intact lung and Na/K-ATPase signalosome.
Alveolar type I and II cells form the alveolar barrier and present the Na+ channel, Na/K-ATPase (NKA)
and aquaporin 5. Endothelial cells form the capillary wall (A); Signalosome of Na/K-ATPase (B);
Binding of cardiotonic steroids to Na/K-ATPase triggers a cascade of events starting with
activation and phosphorylation of Src and caveolin-1, which leads to the transactivation of the
epidermal growth factor receptor (EGFR). Activation of the Ras-Raf-MAPK cascade increases
cytoplasmic Ca2+ and activates the production of reactive oxygen species (ROS) by the mitochondria.
Augmented Ca2+ activates NFκB, leading to immune system activation, cellular proliferation or
apoptosis. Other recruited proteins include PLC (not shown) and PI3K. The downstream effects are
various and include inhibition of the cytoprotective effects of NF-kB and Akt and the activation of
AP-1 and Erk1/2, leading eventually to cell death via apoptosis and autophagy. However, the type
of response depends on the cell type, glycoside concentration and exposure time. ENaC—Epithelial
sodium channel; CFTR—Cystic fibrosis transmembrane conductance regulator; EGFR—Epidermal
growth factor receptor; NFκB—Nuclear factor kappa-light-chain-enhancer of activated B cells;
PLC—Phospholipase C; PI3K—Phosphoinositide 3-kinase; Akt—Protein kinase B; AP-1—Activator
protein 1; Erk—Extracellular signal-regulated kinases.
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In the second mechanistic model, Na/K-ATPase is part of a caveolae-defined environment of
proteins called the signalosome (Figure 4B). Na/K-ATPase is associated with a complex of proteins in
the caveolae that transmits different signals to the intracellular environment [93] and acts as a receptor
for CS. Mutational analysis showed that the caveolin binding motif of the α-subunit of Na/K-ATPase
is required for the translocation of both the α-subunit of Na/K-ATPase and Na+/H+-exchanger to the
basolateral membrane [94]. The Na/K-ATPase signalosome provides survival signals in normal cells
when CS bind to the sodium pump [28,93,95,96] but death signals in cancer cells [31,37,58,85,97–101].

The signalosome may trigger the activation of the inositol trisphosphate receptor (IP3R), PI3K,
Src/caveolin and focal adhesion kinase (FAK) [28,91,95,102,103]. The activation of Na/K-ATPase
localized within the signalosome may induce conformational changes in the pump, which are
transduced to the IP3R of the SR/ER [103,104]. The PI3K/Akt/mTOR pathway regulates cell
proliferation, apoptosis, and autophagy [105,106]. Activation of IP3R, Src-dependent phosphorylation
and activation of phospholipase C (PLC)-α1 stimulate IP3 formation and Ca2+ release from the SR/ER,
ultimately resulting in protein kinase C (PKC) activation [107–110]. Src kinase activation triggers
the phosphorylation of the EGFR and the activation of the Ras/Raf/MEK/Erk 1/2 pathway [111].
Ouabain inhibits Na/K-ATPase and activates p38-MAPK [112] and NFκB, eventually promoting
apoptosis. Pump inhibition suppresses Src through a tyrosine residue located on the α-subunit
of the pump [72,113]. Src kinase activity is regulated by both ATP and ADP concentrations [88],
and contrary to the initial hypothesis, there is no solid evidence for a direct molecular interaction
between Na/K-ATPase and Src under physiological conditions [89]. Activation of these signalling
cascades not only stimulates gene activation and cell proliferation but also provides a synergistic effect
between the calcium-dependent effects of CS and the calcium-independent signalling events that occur
upon the interaction of CS with Na/K-ATPase.

The Ras/Raf/MAPK signalling cascade is also activated when CS interact with non-pumping
sodium pump mutants [114], indicating that a local sodium concentration elevation followed by a rise
in calcium concentration is not necessarily required for the induction of the signalling process [91].
Curiously, CS induce endothelial nitric oxide synthase (eNOS) phosphorylation and NO production in
human umbilical vein endothelial cells, and this effect is associated with CS-induced Na/K-ATPase
activation at low (nM) concentrations [115].

Na/K-ATPase down-regulation has been described in multi-drug resistant (MDR) and
P-glycoprotein-overexpressing cells, and the downstream signalling pathways are also deregulated.
Na/K-ATPase signalosome deregulation seems to favour the MDR phenotype [116]. As recently
reported, CS, at low concentrations, activate the Src-EGFR-Ras-Raf-kinase pathway through
Na/K-ATPase, inhibiting the proliferation and survival of tumour cells [48]. Stress conditions in
the hypothalamus–pituitary–adrenal axis lead to the exhaustion of adrenal production of endogenous
digitalis-like compounds, which may contribute to tumorigenesis in chronic stress situations. In those
cases, low production (pM) will predominantly stimulate the proliferation of tumour cells [117].

Na/K-ATPase as a Modulator of Apoptosis and Autophagy in Non-Small Cell Lung Cancer

The ability of CS to evade cancer cell resistance is related to the differential regulation of gene
expression in cancer cells. The increased sensitivity of cancer cells to CS compared to normal cells
can be explained by many molecular mechanisms, involving intracellular signalling proteins and
differential regulation of transcription [45,88,118].

Examples describing the involvement of intracellular signalling proteins and mutations in
different types of cell death caused by CS and related Na/K-ATPase effects on the signalosome
as targets are described below.

The ability of CS to induce cell death includes enhanced radiosensitivity of H460 and A549.
CS have no effect on H1299, a p53 null cell, indicating that the effects of CS are dependent on p53.
P53 is an oncogene widely implicated in DNA repair and apoptosis. CS contained in huachansu
suppress the cell viability of cancer cells of the p53 phenotype and increase levels of caspase-3 and
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cleaved poly-(ADP-ribose) polymerase (PARP). Huachansu also decreases the expression of Bcl-2 and
p53, reinforcing apoptosis as the cell death mechanism involved in the effect of CS. HCS increases
radiation sensitivity via p53- and caspase-3-dependent mechanisms rather than apoptosis and
impairment of DNA repair [119].

Bufalin inhibits A549 proliferation and Akt activation and synergizes with Akt inhibitors to induce
apoptosis and increase Bax expression. Those phenomena support a role of bufalin in negatively
modulating NSCLC proliferation and apoptosis, which involves an increase in Bax expression,
a decrease in Bcl-2 and livin expression, and caspase activation, all characteristic components of
programmed cell death [120].

TNF-related apoptosis-inducing ligand (TRAIL) resistance often causes lung cancer progression.
Ouabain induces apoptosis of H292 cells in response to TRAIL and increases caspase-3 activation
and PARP cleavage at concentrations non-toxic to normal cells. Ouabain also causes ROS production
and down-regulation of anti-apoptotic Mcl-1. ROS trigger Mcl-1 degradation in the proteasome.
Ouabain induces the expression and activation of pro-apoptotic proteins and the degradation of
anti-apoptotic proteins [121].

Sensitivity to TRAIL can be increased via post-transcriptional mechanisms, such as by
death receptor 5 mRNA stabilization in NSCLC. Na/K-ATPase ligands trigger HuR translocation,
which stabilizes death receptor 5 mRNA, a mechanism that could account for the ability of CS to
counteract TRAIL tolerance and induce apoptosis [122].

Mutation of STK11 is also associated with lung cancer progression. Digoxin and ouabain exhibit
selective effects on STK11 mutant cancer cell lines. Regular STK11 function reduces CS efficacy.
Digoxin reduces the growth of STK11 mutant but not wild-type xenografts. In vitro experiments have
confirmed these data, as digoxin induces ROS generation and G2/M arrest only in STK11 mutant
A549 cells. Preventing ROS formation by N-acetyl-L-cysteine treatment reduces G2/M arrest caused by
digoxin in STK11 mutant A549 cells. SiAMPK treatment of STK11 wild-type cells increases sensitivity
to digoxin. Disruption of STK11-AMPK signalling is important for the effects of digoxin as a growth
inhibitor [123].

Intracellular signalling disruption by Na/K-ATPase inhibitors leads to mitochondrial apoptosis.
Perillyl alcohol is a Na/K-ATPase inhibitor [122]. Temozolomide-perillyl alcohol (TMZ-POH) exhibits
potent cytotoxic activity against NSCLC, inhibiting cell proliferation by inducing G2/M arrest and
DNA damage, decreasing the mitochondrial transmembrane potential and ROS accumulation, and
activating MAP kinases, ultimately leading to apoptosis. The cytotoxicity of TMZ-POH is reversed by
two ROS scavengers, catalase and N-acetyl-L-cysteine [124].

The pro-apoptotic effect of CS may also involve the extrinsic pathway, as demonstrated by studies
using TXA9, a CS from Streptocaulon juventas. TXA9 induces cell cycle arrest in Sub G0/1 and G2/M
periods. TXA9 activates the extrinsic pathway by inducing a signalling complex composed of Fas,
FADD and pro-caspase 8, leading to the production of caspase-8, which activates caspase-3, an effector
caspase, as an apoptosis inducer. In vivo analysis demonstrated that TXA9 efficiently reduces the
tumour growth of NSCLS xenografts [125].

In silico analyses support the involvement of Na/K-ATPase in the effects of CS on apoptosis.
In addition, co-immunoprecipitation and immunolocalization have shown a physical Na/K-ATPase-Bcl-2
protein interaction. A Na/K-ATPase antibody co-immunoprecipitates BCLXL and BAK protein in
FHLC and A549 cells, confirming Na/K-ATPase-Bcl-2 complex formation [126].

The cytotoxic effect of digitoxin in NSCLC H1975 cells is caused by G2 phase arrest in cells resistant
to tyrosine kinase inhibitors. Digitoxin overcomes tyrosine kinase inhibitor resistance and decreases
cell growth via a mechanism dependent on α-tubulin expression and disruption of microtubule
polymerization [127].

Defects in microtubule polymerization cause cell cycle arrest, detachment, and apoptosis.
NSCLC H460 cells are sensitive to apoptosis caused by detachment, a mechanism called anoikis.
Decreased Mcl-1 expression by proteasome degradation can cause NSCLC anoikis. A monosaccharide
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digoxin derivative can sensitize NSCLC to anoikis with higher potency than digoxin itself.
This pro-apoptotic effect was observed only in cancer cells and not in normal small epithelial cells [128].

In a detailed analysis, Wang et al. 2012, showed that CS can induce G2/M arrest even at
concentrations that do not cause apoptosis. Autophagy was observed, with increases in mean times and
dose-dependent autophagic phenotype markers such as LC3-II, Atg5 and Beclin 1 [66]. Autophagy is
a type of cell death followed by vacuolization of the cytoplasm [128].

AMPK signalling has also been reported to occur via mTOR deactivation. ERK 1/2 are also
activated. Pharmacological tools targeting the autophagy cascade or siRNA block autophagy and
enhance cellular viability, relating autophagy to tumour suppression. Digoxin and ouabain trigger
autophagy-dependent growth inhibition involving AMPK-induced mTOR signalling down-regulation
and ERK 1/2 activation [66].

Tat-Beclin 1 induces cell death by autophagy [129], a process called autosis [129,130].
Na/K-ATPase subunit knockdown inhibits autosis induced by Tat-Beclin 1 or starvation. Na/K-ATPase
inhibitors exhibit similar effects [129].

Ouabain also induces cell death in a caspase-independent manner. Conversion of LC3-I to LC3-II
is observed, revealing the presence of autophagic flux. Class III PI3k blocks ouabain-induced cell
death, and reduction of Bcl-2 is observed in ouabain-treated cells. C-Jun N-terminal kinase (JNK)
appears to participate in the ouabain-induced cascade because either pharmacological treatment with
a JNK inhibitor or shRNA prevent Bcl-2 decrease, conversion of LC3-I and cell death. The molecular
mechanisms involved in autophagy caused by ouabain include a decrease in Bcl-2 and consequent
disruption of the interaction with Beclin 1 [129,131].

Src, MEK 1/2 and ERK 1/2 are indeed targets of ouabain and digoxin in A549 and H460 cells.
These enzymes are activated after treatment and participate in the occurrence of autophagic
phenotypes, as indicated by the disruption of MEK 1/2 and ERK activation and autophagy by the Src
inhibitor PP2. The biochemical mechanism of ouabain or digoxin-induced autophagy also involves
ROS generation. Src knockdown abolishes all of these phenomena in NSCLC cells, indicating a central
role of Src in CS-induced autophagy [132].

Considering the involvement of Na/K-ATPase in numerous cellular functions, it is clear that
changes in the expression and activity of this enzyme may be related to the pathophysiology of many
diseases, making this pump a powerful therapeutic target [133]. Drugs targeting Na/K-ATPase are
suitable candidates for cancer treatment because these molecules also target apoptosis-resistant and
MDR cancer cells [45,51,134,135]. MDR cells exhibit down-regulation of Na/K-ATPase and deregulated
downstream signalling pathways, but CS are able to evade MDR [116]. CS have a narrow therapeutic
window because of their cardiovascular risk, which includes arrhythmia, and thus their use requires
caution. The dose–response and dose–toxicity relationships of cardiac CS as anticancer drugs should
be tested in preclinical studies to better design a clinical trial with proper randomization, controls and
sample size. Such studies may provide further support for the use of CS as an anticancer agent in
lung treatment.
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