
Epidemiological and ecological determinants of Zika virus
transmission in an urban setting.

Lourenço J1,*, Maia de Lima M3, Faria NR1, Walker AS1, Kraemer MUG1,
Villabona-Arenas CJ4, Lambert B1, Marques de Cerqueira E2, Pybus OG1, Alcantara LCJ3,
Recker M5,

1 Department of Zoology, University of Oxford, Oxford OX1 3PS, UK

2 Centre of PostGraduation in Collective Health, Department of Health, Universidade Estadual de Feira de
Santana, Feira de Santana, Bahia, Brazil.

3 FIOCRUZ, Laboratory of Haematology, Genetics and Computational Biology, Salvador, Bahia, Brazil.
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Abstract

The Zika virus has emerged as a global public health concern. Its rapid geographic expansion
is attributed to the success of Aedes mosquito vectors, but local epidemiological drivers are
still poorly understood. Feira de Santana played a pivotal role in the Chikungunya epidemic
in Brazil and was one of the first urban centres to report Zika infections. Using a climate-
driven transmission model and notified Zika case data, we show that a low observation rate
and high vectorial capacity translated into a significant attack rate during the 2015 outbreak,
with a subsequent decline in 2016 and fade-out in 2017 due to herd-immunity. We find a
potential Zika-related, low risk for microcephaly per pregnancy, but with significant public
health impact given high attack rates. The balance between the loss of herd-immunity and
viral re-importation will dictate future transmission potential of Zika in this urban setting.

Introduction 1

The first cases of Zika virus (ZIKV) in Brazil were concurrently reported in March 2015 in 2

Camaçari city in the state of Bahia [1] and in Natal, the state capital city of Rio Grande do 3

Norte [2]. During that year, the epidemic in Camaçari quickly spread to other municipalities 4

of the Bahia state, including the capital city of Salvador, which together accounted for over 5



90% of all notified Zika cases in Brazil in 2015 [3]. During this period, many local Bahia 6

health services were overwhelmed by an ongoing Chikungunya virus (CHIKV, East Central 7

South African genotype) epidemic, that was first introduced in 2014 in the city of Feira 8

de Santana (FSA) [4, 5]. The role of FSA in the establishment and subsequent spread of 9

CHIKV highlights the importance of its socio-demographic and climatic setting, which may 10

well be representative for the transmission dynamics of arboviral diseases in the context of 11

many other urban centres in Brazil and around the world. 12

On the 1st February 2015 the first ZIKV cases were reported in FSA, followed by a 13

large epidemic that continued into 2016. The rise in ZIKV incidence in FSA coincided 14

temporally with an increase in cases of Guillain-Barré syndrome (GBS) and microcephaly 15

[3], with an unprecedented total of 21 confirmed cases of microcephaly in FSA between 16

January 2015 and May 2017. There is wide statistical support for a causal link between 17

ZIKV and severe manifestations such as microcephaly [6, 7, 8, 9, 10, 11], and the proposed 18

link in 2015 led to the declaration of the South American epidemic as an international public 19

health emergency by the World Health Organization (WHO) in 2016; the response to which 20

has been limited to vector control initiatives and advice to delay pregnancy in the affected 21

countries [12, 13]. With few cohort studies published [9, 10] and the lack of an established 22

experimental model for ZIKV infection [14, 15], modelling efforts have taken a central role 23

for advancing our understanding of the virus’s epidemiology [16, 17, 18, 19, 20, 21, 22]. In 24

particular, our knowledege on parameters of public health importance, such as the basic 25

reproduction number (R0), the duration of infection [17], attack and reporting rates [23], 26

the risk of sexual transmission [24, 25, 26] and birth-associated microcephaly [27, 21] has 27

advanced significantly from studies using transmission models. Climate variables are critical 28

for the epidemiological dynamics of Zika and other arboviral diseases, such as dengue 29

[28, 29, 30, 31] and chikungunya [32, 33, 34]. Although these have also been previously 30

addressed in mapping and / or modelling studies (e.g. [18, 20, 21, 22]), their effects as 31

ecological drivers for the emergence, transmission and endemic potential of the Zika virus, 32

especially in the context of a well described outbreak, have not yet been addressed in detail. 33

In this study, focusing on an urban centre of Brazil (Feira de Santana), we explicitly 34

model the mosquito-vector lifecycle under seasonal, weather-driven variations. Using notified 35

case data of both the number of suspected Zika infections and confirmed microcephaly cases, 36

we demonstrate how the combination of high suitability for viral transmission and a low 37

detection rate resulted in an extremely high attack rate during the first epidemic wave in 38

2015. The rapid accumulation of herd-immunity significantly reduced the number of cases 39

during the following year, when total ZIKV-associated disease was peaking at the level 40

of the country. Projecting forward we find that the demographic loss of herd-immunity 41

together with the frequency of reintroduction will dictate the risk of reemergence and 42

endemic establishment of Zika in Feira de Santana. The conclusions of this study should 43

be transferable to major urban centres of Brazil and elsewhere with similar climatic and 44

demographic settings. 45



Methods Summary 46

To model the transmission dynamics of ZIKV infections and estimate relevant epidemiological 47

parameters, we fitted an ento-epidemiological, climate-driven transmission model to ZIKV 48

incidence and climate data of FSA between 2015 and 2017 within a Bayesian framework, 49

similar to our previous work on a dengue outbreak in the Island of Madeira [28]. 50

The model is based on ordinary differential equations (ODE) describing the dynamics of 51

viral infections within the human and mosquito populations (eqn. 1-5 and 6-10, respectively). 52

The human population is assumed to be fully susceptible before the introduction of ZIKV and 53

is kept constant in size throughout the period of observation. After an infectious mosquito 54

bite, individuals first enter an incubation phase, after which they become infectious to a 55

mosquito for a limited period of time. Fully recovered individuals are assumed to retain 56

life-long immunity. We assumed that sexual transmission did not significantly contribute to 57

transmission dynamics and therefore ignored its effects [35, 26, 24]. 58

For the dynamics of the vector populations we divided mosquitoes into two life-stages: 59

aquatic and adult females. Adult mosquitoes were further divided into the epidemiologically 60

relevant stages for arboviral transmission: susceptible, incubating and infectious. In contrast 61

to human hosts, mosquitoes remain infectious for life. The ODE model comprised 8 climate- 62

dependent entomological parameters (aquatic to adult transition rate, aquatic mortality 63

rate, adult mortality rate, oviposition rate, incubation period, transmission probability to 64

human, hatching success rate and biting rate), whose dependencies on temperature, rainfall 65

and humidity were derived from other studies (see Table 2). 66

Four parameters (baseline mosquito biting rate, mosquito sex ratio, probability of 67

transmission from human-to-vector and human lifespan) were fixed to their expected mean 68

values, taken from the literature (see Table 3). To estimate the remaining parameters, 69

alongside parameter distributions regarding the date of first infection, the human infectious 70

and incubating periods, and the observation rate of notified ZIKV cases, we fitted the ODE 71

model to weekly notified cases of ZIKV in FSA using a Bayesian Markov-chain Monte Carlo 72

(MCMC) approach. The results are presented both in terms of mean dynamic behaviour 73

of the ODE under the MCMC solutions and posterior distributions of key epidemiological 74

parameters. A full description of the fitting approach and the estimated parameters can be 75

found in the section Materials and Methods. 76

Results 77

On the 1st February 2015 the first Zika virus (ZIKV) case was reported in Feira de Santana 78

(FSA). Weekly cases remained very low for the following two months, adding up to just 10 79

notified cases by the end of March that year (Figure 1A). A rapid increase in the number 80

of cases was observed in April, coinciding with Micareta, a local carnival-like festival that 81

takes place across the urban centres of Bahia. The epidemic peaked in July 2015, which was 82

followed by a sharp decline in notified cases over the next 1-2 months. This first epidemic 83

wave was followed by a significantly smaller outbreak in 2016, peaking around March, and 84

an even smaller outbreak in 2017 with no discernable epidemic peak. 85



Confirmed (and monthly aggregated) microcephaly (MC) cases were absent by Novem- 86

ber 2015, after which a small epidemic was observed with peak counts in January 2016. We 87

found a time lag of 5-6 months (20-24 weeks) between the first reported Zika epidemic wave 88

and the MC peak in case counts. This coincides with previous observations suggesting a 89

link between the development of neurological complications in newborns and ZIKV infec- 90

tion during the second trimester [3]. We note that our lag may be offset by around 1-4 91

weeks, however, since the date of MC cases in our dataset represents the date of diagnostic 92

confirmation, which is usually done postpartum. 93

Overall, the epidemic behaviour in FSA was in sharp contrast with trends observed 94

in notified cases across Brazil (BR) as a whole, for which the second epidemic in 2016 was 95

approximately 6 times larger than the one in 2015 (Figure 1A), suggesting the Bahia state 96

as a focus point in the emergence and initial spread of ZIKV in Brazil [36, 3]. Nonetheless, 97

a clear temporal synchronization between country level and FSA case counts could be 98

observed. 99
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Figure 1 - Zika virus epidemics in Feira de Santana and Brazil (2015-2016). (A) 101

Comparison of weekly notified Zika cases (full red line) with monthly Microcephaly cases 102

(blue bars) in Feira de Santana (FSA), overimposed with total Zika cases at the level of 103

the country (BR, black dotted line). BR data for weeks 50-52 was missing. Green area 104



highlights the time period for the Micareta festival and the dotted grey line the date of first 105

notification. Incidence series is available as Dataset 3 and Microcephaly series as Dataset 4. 106

(B) Age distribution and incidence rate ratio (IRR) for the 2015 (blue) and 2016 (green) 107

FSA epidemics (data available as Dataset 2). The top panel shows the number of cases per 108

age (full lines) and the proportion of total cases per age class (dashed lines), which peak at 109

the age range 20-50. The bottom panel shows the age-stratified incidence risk ratio (IRR, 110

plus 95% CI ), with the red dotted line indicating IRR = 1. (C) Spatial distribution of 111

cumulative notified cases in BR at the end of 2015 (left) and mid 2016 (right). Two largest 112

urban centres in the Bahia state (Salvador, Feira de Santana) and at the country level (São 113

Paulo, Rio de Janeiro) are highlighted. 114

The age distribution of notified ZIKV cases in FSA suggested a higher proportion 115

of cases between 20 and 50 years of age, but with no discernible differences between the 116

two epidemics (Figure 1B, top panel). However, when corrected for the expected number 117

of cases assuming an equal risk of infection per age class, we found the number of cases 118

within this age group to be closer to most other groups (incidence rate ratio, IRR, close to 119

1, Figure 1B, bottom panel). The per capita case counts within the youngest age class (<1 120

years) appeared higher than expected, with an IRR significantly above 1 and also higher 121

in 2016 (IRR=4.4, 95% CI [2.8, 7.0]) than in 2015 (IRR=1.95, 95% CI [1.5, 2.6]), possibly 122

indicating biased reporting and / or health care seeking with increased awareness of the 123

disease. There was also a consistent trend towards reduced IRR in the elderly (>65 years), 124

although with significant uncertainties. Finally, a small increase in IRR could be detected 125

in the 20-34 year olds, which could potentially be a signature of sexual transmission in 126

this age group [25, 37, 38, 39, 35, 24, 26]. At this stage and without more detailed data it 127

was not possible to ascertain whether these findings indicated age-related risk of disease, 128

age-dependent exposure risk or simply notification biases in particular age groups, however. 129

The spatial distribution of total notified cases for BR highlighted the expected clustering 130

of ZIKV cases within the Bahia state by the end of 2015 as well as the wider geographical 131

range by July 2016 (Figure 1C). We speculate that the difference in geographical range could 132

explain the higher number of cases observed during the 2016 epidemic at the country level. 133

This, on the other hand, did not explain why the second epidemic in FSA was nearly 7 times 134

smaller than the first and with only sporadic cases in 2017. To answer this question and to 135

obtain robust parameter estimates of ZIKV epidemiological relevance we utilised a dynamic 136

transmission model, which we fitted to notified case data and local climate variables of FSA 137

within a Bayesian framework (see Materials and Methods). 138

Climate-driven vectorial capacity 139

The reliance on Aedes mosquitoes for transmission implies that the transmission potential 140

of ZIKV is crucially dependent on temporal trends in the local climate. We therefore 141

investigated daily rainfall, humidity and mean temperature data in FSA between 2013 142

and May 2017 (Figure 2A). The data showed erratic fluctuations in rainfall with sporadic 143

episodes of intense rain but without a clear seasonal trend. Temperature, on the other 144

hand, presented a much clearer seasonal signature with fixed amplitudes between 22 and 145

27 degree Celsius, peaking between December and May. Humidity showed an intermediate 146



scenario and appeared correlated with periods of intense rainfall but negatively correlated 147

with temperature. 148

By fitting our climate-driven transmission model to the local climate and ZIKV case 149

data (see Material and Methods and Figure 2B) we obtained parameter estimates for the 150

mosquito lifespan as well as the viral extrinsic incubation period (EIP) for the same period. 151

Mosquito lifespan and EIP are main drivers of vectorial capacity and both showed seasonal 152

oscillations with median values of around 9 and 5 days, respectively (Figure 8), which are in 153

line with ranges found in the literature ([40, 41, 42, 43] and Table 1). Importantly, there was 154

a strong negative temporal correlation between these two variables, with periods of longer 155

EIP coinciding with shorter lifespans and vice-versa. This negative relationship resulted in 156

large temporal variations in vectorial capacity and thus seasonal oscillations in the daily 157

reproductive numbers, R0, with a median value of 2.7 in the period 2015-2017 (range 1.0-4.3, 158

Figure 8), and 2.2 before 2015, peaking in the local summer months between December and 159

April (Figure 2C). Importantly, R0 remained above 1 for the entire period, indicating a high 160

suitability for ZIKV in FSA. It should be noted that R0 in this context is a time-dependent 161

variable, i.e. R0(t), but out of convenience we simply refer to it as R0. 162

We also looked at the relationship between each climatic variable and R0 and case counts 163

(Figures 2D and E, respectively). The transmission potential was strongly and positively 164

correlated with temperature (r2 = 0.728) and negatively with humidity (r2 = 0.26). As 165

expected, from the highly random patterns in the climate series, there was no correlation 166

between R0 and rainfall (r2 = 0.008). In contrast, there was an opposite trend in the 167

relationship between the climatic variables and case counts, with a positive correlation with 168

humidity (r2 = 0.28) and a negative correlation with temperature (r2 = 0.23). As with R0 169

there was only a weak observable trend in the relationship between rainfall and the number 170

of Zika cases. It should be understood that this macroscopic analysis does not take into 171

account the expected temporal lags due to mosquito development, incubation periods etc., 172

so the purpose here was simply to identify a general qualitative relationship between climate, 173

vectorial capacity and disease incidence. 174
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Figure 2 - Eco-epidemiological factors and model fit to notified cases. (A) Zika 176

case data (black) and daily climatic series for rainfall (gold), humidity (blue) and mean 177

temperature (green) for Feira de Santana (FSA). Climate data available as Dataset 1. (B) 178

Resulting Bayesian MCMC fit to weekly (black line: data, purple line: model fit) and 179

cumulative incidence (black line: data, grey line: model fit). (A,B) The grey areas highlight 180

the period before the Zika outbreak, the white areas highlight the period for which notified 181

case data was available, and the yellow shaded areas highlight the period for which mean 182

climatic data was used (see Materials and Methods). (C) Climatic series as in A and 183

estimated R0 for the period of the outbreak (2015-2017) (R0 absolute values in Figure 8). 184

(D) Correlations between the estimated R0 and climatic variables (intercepts: 0.839 for 185

humidity, 0.067 for rainfall and 0.658 for temperature). (E) Correlations between the case 186

counts and climatic variables (intercepts: 0.487 for humidity, 0.024 for rainfall and 0.862 for 187

temperature). (D,E) Points presented are from timepoints (weeks) for which incidence was 188

notified. (A-E) Y-axis normalised between 0 and 1 for visualisation purposes. 189

Model fit and parameter estimates 190

Four parameters of public health importance were estimated by our MCMC framework: the 191

date of introduction, the human infectious period, the human (intrinsic) incubation period, 192

and the case observation rate (Table 4). The posterior for the introduction date showed 193

a strong support for an introduction into FSA in early-mid December 2014 (estimated 194

median: 10th of December), i.e. around 7-8 weeks before the first notified case (Figure 3A). 195

The estimated human infectious period was ≈ 6 days (Figure 3C, median= 5.9, 95% CI 196



[5.47-6.14]), which was very similar to the estimated incubation period (Figure 3D, median= 197

5.8, 95% CI [5.6-6.15]) and in line with previously estimated ranges for ZIKV (Table 1). 198

In this context it is important to note that informative priors had been used for these 2 199

parameters (Figure 7), and the posterior for the incubation period presented an adjustment 200

of ≈ −0.5 days relative to the proposed distribution from the literature. 201

Of particular interest here was the very low observation rate (Figure 3B), with a median 202

of just under 0.004 (median= 0.0039, 95% CI [0.0038-0.0041]), which equates to less than 4 203

in 1000 infections having been notified during the epidemic in FSA. Although lower than 204

other previously reported estimates, this would explain the relatively long period of low viral 205

circulation before the epidemic took off in April 2015. That is, based on our estimates, there 206

were around 2,700 Zika infections during the first 2 months, of which only 10 were notified. 207

More importantly, when applying this rate to the total number of cases we found that by 208

the end of the first epidemic wave around 65% (95% CI [57.0-72.9]) of the population in 209

FSA had been infected by the virus. This high attack rate is not unusual for Zika, however, 210

and is in general agreement with observations elsewhere (Table 1). 211
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Figure 3 - Estimated epidemiological and ecological parameters. MCMC posterior 213

distributions, based on model fitting to notified case data between 2015-2017 and obtained 214

from sampling 1 million MCMC steps after burn-in. (A) Posterior of the introduction date 215

with median 10th December 2014 (95% CI [01-16 Dec]). (B) Posterior of the observation 216

rate with median 0.0039 (95% CI [0.0038-0.0041])). (C) Posterior of the human infectious 217

period with median 5.9 days (95% CI [5.47-6.14]). (D) Posterior of the human (intrinsic) 218

incubation period with median 5.8 days (95% CI [5.6-6.15]). Representative samples of 500 219

MCMC chain states are available in Supplementary Files 1-6. See Figure 9 for sample chain 220

behaviour. 221



Future transmission potential for Zika virus 222

As illustrated by the cumulative attack rate in Figure 4A, and similar to estimates from 223

other regions in the world (Table 1), nearly 65% of the population got infected by ZIKV by 224

the end of 2015, which rose to over 75% (95% CI [76.9-84.3]) by the end of 2016. During the 225

first wave most cases occurred off-season, here defined by our estimated daily reproductive 226

number (R0), while the second wave appeared much more synchronized with the period of 227

high transmission potential. Notably, this temporal phenomenon has also been observed for 228

the chikungunya virus (CHKV) when it was first introduced into FSA in 2014 [5]. 229

The amassed accumulation of herd-immunity during the first wave resulted in a 230

marked difference between the estimated basic reproductive number, R0, and the effective 231

reproductive ratio (Re) by the end of 2015 (Figure 4A). This in turn might explain the 232

marked reduction in Zika cases in FSA in 2016, at a time when the virus was infecting 233

large numbers of individuals elsewhere in the country (Figures 1A, C). At the start of 2016, 234

Re was estimated to be more than 3 times smaller than R0, which increased to 5 by the 235

beginning of 2017. Projecting into the future using average climate data for this region 236

showed that the mean effective reproductive number is expected to remain low and close 237

to 1 for the next few years, suggesting a very weak potential for ZIKV endemicity in the 238

near future. In fact, the sporadic nature of Zika cases in 2017 strongly suggest that herd 239

immunity in this region is at a sufficiently high level to prevent sustained transmission. 240

Furthermore, during 2017, Re was on average less than 1 (mean: 0.62, range: 0.25-1.06), and 241

we would therefore argue that the small number of cases (1.4% of 2015-2017) were mostly 242

a result of small transmission chains, either from resonant transmission from the previous 243

year, or from introduction events from nearby locations. Crucially, this would also explain 244

why our ODE model matched both the dynamics and the sizes of the first two epidemic 245

waves in FSA between 2015 and 2016 but failed to capture the small number of cases during 246

2017 (Figure 2B). 247
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Figure 4 - Projected Zika virus dynamics and transmission potential. (A) Fitted 250

and projected epidemic attack rate (% population infected, or herd-immunity, green), 251

basic reproduction number (R0, red) and effective reproduction number (Re, blue).(B) 252

Colourmap showing the projected total number of annual cases depending on rate of external 253

introduction of infectious individuals.The black arrow in the color scale marks the total 254



number of real cases necessary for 1 notified case to be reported in FSA. (C) Projected 255

incidence dynamics when considering less than 1 (green), 2 (blue) and 12 (red) external 256

introductions per year. Grey and white shaded areas delineate different years. The Y-axes 257

are normalised to 1 in each subplot for visualisation purposes. In (B, C) results are based 258

on 1000 stochastic simulations with parameters sampled from the posterior distributions 259

(Figure 3). Representative model solutions for incidence, R0 and Re from 500 MCMC chain 260

samples are available in Supplementary Files 1-6 (both deterministic and stochastic). 261

Without external introductions of infectious individuals (human or vector) our results 262

predicted an epidemic fade-out by 2017, in accordance with the lack of notified cases after 263

March 2017 (Figure 4A). We therefore projected ZIKV’s epidemic potential over the next 264

two decades (until 2040) using stochastic simulations (see Material and Methods) while 265

assuming different rates of viral introduction (Figures 4B, C). Our results showed that the 266

potential for ZIKV to cause another outbreak or to establish itself endemically in FSA is 267

strongly dependent on the frequency of re-introductions, whereby higher rates of external 268

introductions might in fact help to sustain high levels of herd immunity, whereas infrequent 269

introductions are more likely to result in notable outbreaks. That is, semi-endemic behaviour 270

was only observed in simulations with low introduction rates (Figures 4B-C), as these 271

scenarios strike a fine balance between a low number of new cases affecting herd-immunity 272

levels and population turnover. In contrast, high introduction rates quickly exhaust the 273

remaining susceptible pool, resulting in very long periods without epidemic behaviours. 274

Sensitivity to reporting and microcephaly risk 275

In effect, our estimated observation rate entails the proportion of real infections that would 276

have been notified if symptomatic and correctly diagnosed as Zika. Based on the previously 277

reported Yap Island epidemic of 2007 [44], the percentage of symptomatic infections can 278

be assumed to be close to 18%. Unfortunately, measures of the proportion of individuals 279

seeking medical attention and being correctly diagnosed do not exist for FSA, although it 280

is well known that correct diagnosis for DENV is imperfect in Brazil [45]. We therefore 281

performed a sensitivity analysis by varying both the proportions of infected symptomatic 282

individuals seeking medical attention and the proportion of those being correctly diagnosed 283

for Zika. Figure 5A shows that if any of these proportions is less than 10%, or both between 284

15-20%, our observation rate of 3.9 per 1000 infections can easily be explained. 285

Finally we investigated the sensitivity of our results with regards to the expected 286

number of newborns presenting microcephaly (MC). Following the observation that virtually 287

all reported MC cases were issued before the summer of 2016 and with a lag of 5-6 months 288

(Figure 1A), we assumed that the vast majority of Zika-associated MC cases would have 289

been a consequence of the first epidemic wave in 2015. We used the estimated attack 290

rate of approximately 65% from 2015 (Figure 4A) and varied the local birth rate and the 291

theoretical risk of MC to obtain an expected number of cases. In agreement with other 292

reports [7, 46, 47, 48], our model predicted a relatively low risk for MC given ZIKV infection 293

during pregnancy (Figures 5B, C). In particular, using a conservative total of 21 confirmed 294

MC cases in FSA, i.e. rejecting suspected or other complications, we estimate an average 295

risk of approximately 0.35% of pregnancies experiencing ZIKV infection. Including the 3 296



foetal deaths where ZIKV infections were confirmed during pregnancy, i.e. using a total of 297

24 cases, only increased the risk to 0.39%. More generally, based on the results from our 298

fitting approach and using the average birth rates of FSA as guideline, we estimate that on 299

average 3-4 MC cases are expected per 100k individuals at 65% exposure to the virus. 300
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Figure 5 - Sensitivity to reporting and microcephaly risk in Feira de Santana 303

(FSA). (A) The observation rate (OR) can be expressed as the product of the proportion 304

of cases that are symptomatic (0.18 [44]), with the proportion of symptomatic that seek 305

medical attention, and the proportion of symptomatic that upon medical attention get 306

correctly diagnosed with Zika. In the white area the expected number of notified cases is 307

the range obtained from fitting FSA case data (OR=0.0039, 95% CI [0.0038-0.0041], Figure 308

3). (B) Expected number of cases of microcephaly (MC) for theoretical ranges of birth rate 309

(per 1,000 females) and risk of MC assuming 65% exposure of all pregnancies as estimated 310

by our model for 2015 in FSA. (C) Expected number of MC per 100,000 individuals under 311

the same conditions as in B. The symbols in B and C represent the total confirmed MC 312

cases (21, red diamond), and the 21 MC plus 3 fetal deaths with confirmed Zika infection 313

(24, white circle); the dashed horizontal line marks the number of births for FSA in 2015, 314

and the vertical lines are the estimated risks per pregnancy. 315

Discussion 316

Using an ento-epidemiological transmission model, driven by temporal climate data and 317

fitted to notified case data, we analysed the 2015-2017 Zika outbreak in the city of Feira de 318

Santana (FSA), in the Bahia state of Brazil and determined the conditions that led to the 319

rapid spread of the virus as well as its future endemic and epidemic potential in this region. 320

Given FSA’s high suitability for ZIKV mosquito-vectors and its particular geographical 321

setting as a state commerce and transport hub, our results should have major implications 322

for other urban centres in Brazil and elsewhere. 323

The pattern of reported ZIKV infections in FSA was characterized by a large epidemic 324

in 2015, in clear contrast to total reports at the country-level, peaking during 2016. Most 325

notably for FSA was the epidemic decay in 2016 and fadeout in 2017. In order to resolve 326

whether this was due to a lower transmission potential of ZIKV in 2016/2017 in FSA, 327



we calculated the daily reproductive number (R0) between 2013 and 2017 but found no 328

notable decrease in 2016. Interestingly, the maximum R0 in that period was observed in 329

the season 2015/2016, coinciding with El Niño [49] and thus in line with the hypothesis 330

that this phenomenon may temporary boost arboviral potential [50, 31]. By fitting our 331

model to weekly case data we also estimated the observation rate, i.e. the fraction of cases 332

that were notified as Zika out of the estimated total number of infections. It has previously 333

been reported that the vast majority of Zika infections go unnoticed (Table 1), which is in 334

agreement with our estimates of an observation rate below 1%. Based on this, around 65% 335

of the local population were predicted to have been infected by ZIKV during the first wave 336

in 2015, which is in the same range as the reported Zika outbreaks in French Polynesia (66%) 337

[46] and Yap Island (73%) [44]. The accumulation of herd-immunity caused a substantial 338

drop in the virus’s effective reproductive number (Re) and hence a significantly lower number 339

of cases during the second wave in 2016 and subsequent demise in 2017. In the context of 340

FSA, it is possible that the high similarity of case definition to DENV, the concurrent CHIKV 341

epidemic, and the low awareness of ZIKV at that time could have resulted in a significant 342

number of ZIKV infections being classified as either dengue or chikungunya. Furthermore, 343

based on our analysis, we would argue that the percentage of correctly diagnosed ZIKV 344

infections and infected individuals seeking medical attention must have been exceptionally 345

low (both lower than 20%). 346

The age structure of notified cases showed a higher than expected incidence risk ratio 347

(IRR) for individuals under the age of 4 years and a lower than expected risk for individuals 348

aged +50 years. This contrasts the observation during the Zika outbreak on Yap Island in 349

2007, where all age classes, except the elderly, presented similar attack rates [44]. We note 350

here, however, that the Yap Island analysis was based on both a retrospective analysis of 351

historical hospital records and prospective surveillance (serology, surveys). It is therefore 352

possible that the signatures amongst the youngest and oldest individuals in FSA may reflect 353

deficiencies and / or biases in local notified data. Such signatures could emerge by both a 354

rush of parents seeking medical services driven by a hyped media coverage or prioritization 355

of child-care due to the emergence of microcephaly during the Zika epidemic and a small 356

proportion of the elderly seeking or having access to medical attention. In fact, the increased 357

risk in young children in 2016 may have been a result of increased awareness as well as the 358

interventions by the WHO in the second year. We also found a small increase in IRR in 359

the 20-34 years age group, particularly during 2016, which could be indicative of the small 360

contribution of sexual transmission [26, 24]. Most of these observations are speculative, 361

however, and more detailed data will be required to fully understand these age-related risk 362

patterns. For instance, initiatives such as the ZiBRA Project [51, 36, 52], which perform 363

mobile and real-time sampling with portable genome sequencing, could prove to be essential 364

for a retrospective and future analysis of the ZIKV epidemic in Brazil, especially in areas 365

where high levels of herd-immunity will prevent large-scale circulation in the coming years 366

[17]. 367

The implicit consideration of climate variables as drivers of vector biology allowed us to 368

ascertain the relative roles of temperature, humidity and rainfall for Zika’s basic and effective 369

reproductive potentials (R0 and Re, respectively). Similar to other studies in temperate 370

and tropical settings, we found that temperature, with its direct influence on mosquito 371

lifespan, aquatic development and extrinsic incubation period, was the key driver of seasonal 372



oscillations in the transmission potential [28, 53, 33, 29]. Rainfall, on the other hand, only 373

seemed to play a marginal role and we argue that it may be a relevant player for arboviral 374

transmission mainly in tropical regions subject to intense rain seasons, such as areas in South 375

East Asia [54, 55, 56]. We also noted that the correlations between climatic variables and 376

case counts were inverted when addressed against the transmission potential. For instance, 377

while temperature was positively correlated with R0 it was negatively correlated with Zika 378

cases. This implies that the transmission potential is readily responsive to climatic variation 379

but that the Zika epidemics in FSA showed a slight but expected delay in relation to the 380

peak in transmission potential, with case numbers generally increasing after a stable period 381

of maximum R0, followed by epidemic peaks that tended to coincide with declining R0. 382

An interesting observation is that the 2015 epidemic peaked approximately 3 months after 383

the estimated peak in the virus’s transmission potential, whereas there was much higher 384

synchrony during the second wave in 2016. The same behaviour has been described for 385

the CHIKV outbreak in FSA in 2014-2015 and which has been linked to highly discordant 386

spatial distributions between the first two epidemics [5]. It is likely that similar spatial 387

effects [57] were present in FSA’s ZIKV outbreaks. Unfortunately we did not have access to 388

sufficiently detailed spatial data to explore this hypothesis further. 389

A phylogenetic analysis has proposed that the introduction of ZIKV into Bahia took 390

place between March and September 2014, although without direct evidence for its circulation 391

in FSA at that time [58]. Our estimated date of introduction showed support for a date in 392

early-mid December 2014, a few months after the proposed introduction into Bahia and just 393

over 7 weeks before the first case of Zika was notified in FSA. Similar periods between the 394

first notification and estimated introduction often represent the time taken to complete one or 395

more full transmission cycles (human-mosquito-human) before a cluster of cases is generated 396

of sufficient size for detection by passive surveillance systems [28]. The case data also shows 397

a 2-months period after the first notification during which weekly case numbers remained 398

extremely low. This long period was unexpected as persistent circulation of ZIKV could 399

hardly be justified by the observed total of only 10 cases. Given our estimated observation 400

rate, however, the number of ZIKV infections during this time could have amounted to 401

over 2,700 actual cases. In April, the number of cases increased rapidly, coinciding with the 402

Micareta festival, which we argue may have played a role in igniting the exponential phase 403

of the epidemic by facilitating human-vector mixing as well as a more rapid geographical 404

expansion. 405

After calibrating our model to the 2015-2017 epidemic, we projected the transmission 406

of ZIKV beyond 2017 using stochastic simulations and average climatic variables for this 407

region. Without the possibility of externally acquired infections, local extinction was very 408

likely by 2017 due to the high levels of herd-immunity. According to our study, Zika’s 409

reproductive potential (Re) reached its lowest point in 2017, and it is expected to remain low 410

for the next couple of years, given the slow replenishment of susceptibles in the population 411

through births. When explicitly modelling the importation of infectious cases our projections 412

for the next two decades corroborated the conclusions of previous modelling studies that 413

suggest a weak endemic potential for ZIKV after the initial exhaustion of the susceptible 414

pool [17, 23]. However, our simulations also showed that the future epidemic behaviour is 415

strongly dependent on the frequency of re-introductions, where sporadic and unpredictable 416

epidemics could still be in the order of hundreds of cases. Furthermore, given our estimated 417



observation rate for the 2015-2017 epidemic, passive surveillance systems are unlikely to 418

fully detect the scale and occurrence of such small epidemics, missing their actual public 419

health impact, and as such efforts should thus be placed to improve ZIKV detection and 420

diagnosis in order to optimize the local reporting rates and potential for control. 421

Human sexual and vertical transmission of ZIKV is an important public health concern, 422

especially within the context of potential Zika-associated microcephaly (MC) and other 423

neurological complications in pre- and neonatals. With a total of over 10,000 live births 424

in 2015 in FSA, our crude estimate for the risk of Zika-associated MC per pregnancy was 425

below 4 cases per 100,000 individuals in a generalized population under an attack rate of 426

65%. As discussed elsewhere [46], this risk is extremely low when compared to other known 427

viral-associated complications, such as those caused by infections by cytomegalovirus (CMV) 428

and the rubella virus (RV) [59, 60]. It is therefore crucial to reiterate that what makes 429

the ZIKV a public health concern is not necessarily the per pregnancy risk of neurological 430

complications, but rather the combination of low risk with very high attack rates. Other 431

studies have reported that the risk for complications during the 1st trimester of gestation is 432

higher than the one estimated here. For example, in the French Polynesia (FP) outbreak 433

[46], the risk associated with ZIKV infection during the 1st trimester was 1%, while the 434

overall, full pregnancy risk was 0.42%, similar to our FSA estimates. For the Yap Island 435

epidemic, no microcephaly cases have been reported. With an estimated 24 births per 436

1,000 females (census 2000 as in [44]) and using an overall risk of approximately 0.4% per 437

pregnancy, only 0-3 cases per 100,000 individuals would have been expected. However, the 438

island’s small population size (7391 individuals [44]) together with a general baseline of 0-2 439

microcephaly cases per 100,000 in many areas of the world [48, 61, 62] would explain the 440

absence of reported cases. It is also important to consider that a variety of birth defects have 441

been found to be statistically associated with Zika virus infection during pregnancy, of which 442

MC is one possible outcome. While the risk for birth defects per pregnancy is consistently 443

reported to be high, estimations for the risk of MC vary considerably. For example, recent 444

clinical trials [9, 10] suggested that the risk of Zika-associated MC could be an order of 445

magnitude higher than the estimate reported in this or other previous studies [46, 44]. At 446

this stage it is not possible to explain these differences, but it is tempting to speculate that 447

other factors must influence either the actual or estimated risk. For example, there could be 448

diagnostic biases or differences between epidemiological and clinical studies. Alternatively, 449

viral or host genetic background, as well as the pre-exposition to other arboviruses may 450

influence the absolute risk experienced by local populations or cohorts. 451

Official notification of Zika infections in Brazil started on the 1st of January 2016, 452

although cases were reported in many other regions in Brazil during 2015. It is therefore 453

plausible that the observation rate changed upon official guidelines and that the capacity 454

to accurately diagnose and report Zika infections could have been lower in 2015 compared 455

subsequent years. To explore this, we reran our fitting approach allowing for a possible 456

change in the observation rate for 2016 and onwards (Figure 10) and found a similar 457

observation rate for 2015 (0.0039 versus 0.0034) as well as a similar attack rate between the 458

two model variants. However, the estimated observation rate for 2016 and beyond was ≈ 4 459

times larger than for 2015, implying a positive change due to changes in the surveillance 460

system. Nevertheless, only about 13-14 out of 1000 Zika cases were reported after the 1st of 461

January 2016. It is hard to discern where the positive changes took place, but we suggest 462



the revised diagnosis guidelines may have increased the proportion correctly diagnosed while 463

the proportion of symptomatic individuals visiting medical facilities did not change. It is 464

also tempting to speculate that the 2015/2016 imbalance in reporting may have been a 465

general phenomenon across Brazil. As described elsewhere, it is thus possible that FSA 466

is a good example of states and urban centres that may have witnessed larger epidemics 467

than reported in 2015 [11]. This, together with our conclusion that low MC risk with very 468

high attack rates makes ZIKV a public health concern, could explain why most MC reports 469

at the level of the country were in 2015 [11], although for many regions the total reported 470

number of ZIKV cases may have been surprisingly small that year. 471

There are certain limitations to our approach, many of which could be revisited when 472

more detailed data becomes available. For example, we assumed homogeneous mixing 473

between human and mosquito hosts but it is possible that spatio-temporal heterogeneities 474

may have played a role in FSA. Furthermore, we have curated and integrated functional 475

responses of key entomological parameters to temperature, rainfall and humidity variation, 476

which were originally reported for dengue viruses. Our fitting approach is also dependent 477

on notified case data and it is possible that the reported cases are not representative of 478

the initial expansion of the virus, which may have thwarted the obtained posterior of the 479

introduction date. Finally, our future projections for the endemic and epidemic potential of 480

ZIKV are based on average climatic trends of past years and do not capture the occurrence of 481

natural variation between years, in particular for years affected by major Southern American 482

climate events, such as the El Niño [50]. 483

In this study we have addressed the local determinants of ZIKV epidemiology in the 484

context of a major urban centre of Brazil. Our results imply that control and surveillance of 485

ZIKV should be boosted and focused in periods of high temperature and during major social 486

events. These factors could identify windows of opportunity for local interventions to mitigate 487

ZIKV introduction and transmission and should be transferable to other areas for which 488

both temperature data and community event schedules are available. We further confirm 489

that the high transmission potential of ZIKV in urban centres can lead to the exhaustion of 490

the local susceptible pool, which will in turn dictate the long-term epidemic and endemic 491

behaviour of the virus. Depending on the rate of re-introduction, sporadic outbreaks are to 492

be expected, although these will be unlikely to result in a notable increase in the number of 493

microcephaly cases due to their limited sizes and low risk per pregnancy. Nonetheless, these 494

local sporadic occurrences could still have important public health consequences, and we 495

argue that much better diagnostics and reporting rates are required for local authorities 496

to detect and respond to such events in the near future. Our integrated mathematical 497

framework is capable of deriving key insights into the past and future determinants of ZIKV 498

epidemiology and its findings should be applicable to other major urban centres of Brazil 499

and elsewhere. 500



Materials and Methods 501

Demographic and socio-economic setting 502

Feira de Santana (FSA) is a major urban centre of Bahia, located within the state’s largest 503

traffic junction, serving as way points to the South, the Southeast and central regions of 504

the country. The city has a population of approximately 620.000 individuals (2015) and 505

serves a greater geographical setting composed of 80 municipalities (municipios) summing 506

up to a population of 2.5 million. Although major improvements in water supply have been 507

accomplished in recent decades, with about 90% of the population having direct access 508

to piped water, supply is unstable and is common practice to resort to household storage. 509

Together with an ideal (tropical) local climate, these are favourable breeding conditions 510

for species of the Aedes genus of mosquitoes, which are the main transmission vectors of 511

ZIKV, CHIKV and the dengue virus (DENV) that are all co-circulating in the region [30, 37]. 512

FSA’s population is generally young, with approximately 30% of individuals under the age 513

of 20 and 60% under the age of 34. In the year of 2015, the female:male sex ratio in FSA 514

was 0.53 and the number of registered births was 10352, leading to a birth rate standard 515

measure of 31 new-borns per 1000 females in the population. 516

Climate data 517

Local climatic data (rainfall, humidity, temperature) for the period between January 2013 518

and May 2017 was collected from the Brazilian open repository for education and research 519

(BDMEP, Banco de Dados Meteorológicos para Ensino e Pesquisa) [63]. The climate in 520

FSA is defined as semi-arid (warm but dry), with sporadic periods of rain concetrated 521

within the months of April and July. Between 2013 and 2015, mean yearly temperature was 522

24.6 celsius (range 22.5-26.6), total precipitation was 856 mm (range 571-1141), and mean 523

humidity levels 79.5% (range 70.1-88.9%). Temperature, humidity and precipitation per day 524

is available as Dataset 1. 525

Zika virus notified case data 526

ZIKV surveillance in Brazil is conducted through the national notifiable diseases information 527

system (Sistema de Informação de Agravos de Notificação, SINAN), which relies on passive 528

case detection. Suspected cases are notified given the presence of pruritic maculopapular 529

rash (flat, red area on the skin that is covered with small bumps) together with two or 530

more symptoms among: low fever, or polyarthralgia (joint pain), or periarticular edema 531

(joint swelling), or conjunctival hyperemia (eye blood vessel dilation) without secretion and 532

pruritus (itching) [64, 65]. The main differences to case definition of DENV and CHIKV 533

are the particular type of pruritic maculopapular rash and low fever (as applied during 534

the Yap Island ZIKV epidemic [44]). The data presented in Figure 1 for both Brazil and 535

FSA represents notified suspected cases and is available as Dataset 3 (please refer to the 536

Acknowledgement section for sources). Here, we use the terms epidemic wave and outbreak 537

interchangeably (but see [21]). 538



Microcephaly and severe neurological complications case data 539

A total of 53 suspected cases with microcephaly (MC) or other neurological complications 540

were reported in FSA between January 2015 and February 2017. Using guidelines for 541

microcephaly diagnosis provided in March 2016 by the WHO (as in [36]), a total of 21 cases 542

were confirmed after birth and follow-up. A total of 3 fetal deaths were reported for mothers 543

with confirmed ZIKV infection during gestation but for which no microcephaly assessment 544

was available. The first confirmed microcephaly case was reported on the 24th of November 545

2015 and virtually all subsequent cases were notified before August 2016 (with the exception 546

of 2). The microcephaly case series can be found in Dataset 4. 547

Ento-Epidemiological Dynamic Model 548

The ordinary differential equations (ODE) model and the Markov-chain Monte Carlo 549

(MCMC) fitting approach herein used are based on the framework previously proposed to 550

study the introduction of dengue into the Island of Madeira in 2012 [28]. We have changed 551

this framework to relax major modelling assumptions on the mosquito sex ratio and success 552

of egg hatching, have included humidity and rainfall as critical climate variables, and have 553

also transformed the original least squares based MCMC into a Bayesian MCMC. The 554

resulting framework is described in the following sections, in which extra figures are added 555

for completeness. 556

The dynamics of infection within the human population are defined in equations 557

1-5. In summary, the human population is assumed to have constant size (N) with mean 558

life-expectancy of µh years, and to be fully susceptible before introduction of the virus. Upon 559

challenge with infectious mosquito bites (λv→h), individuals enter the incubation phase (Eh) 560

with mean duration of 1/γh days, later becoming infectious (Ih) for 1/σh days and finally 561

recovering (Rh) with life-long immunity. 562

dSh

dt
= µhN − λv→h − µhSh (1)

dEh

dt
= λv→h − γhEh − µhEh (2)

dIh

dt
= γhEh − σhIh − µhIh (3)

dRh

dt
= σhIh − µhRh (4)

N = Sh + Eh + Ih +Rh (5)

For the dynamics of the mosquito population (equations 6-10), individuals are divided 563

into two pertinent life-stages: aquatic (eggs, larvae and pupae, A) and adult females (V ) as 564

in [66]. The adults are further divided into the epidemiologically relevant stages for arboviral 565

transmission: susceptible (Sv), incubating (Ev) for 1/γ̇v days and infectious (Iv) for life. 566

The ˙ (dot) notation is here adopted to distinguish climate-dependent entomological factors 567

(further details in the following sections). 568



dA

dt
= ċvfθ̇v

(
1− A

K (R+ 1)

)
V − (ε̇vA + µ̇vA)A (6)

dSv

dt
= ε̇vAA− λh→v − µ̇vV Sv (7)

dEv

dt
= λh→v − γ̇vEv − µ̇vVEv (8)

dIv

dt
= γ̇vEv − µ̇vVEv (9)

V = Sv + Ev + Iv (10)

Here, the coefficient ċv is the fraction of eggs hatching to larvae and f the resulting 569

female proportion. For simplicity and lack of quantifications for local mosquito populations, 570

it is assumed that the sex ratio remains at 1:1 (i.e. f = 0.5). Moreover, ε̇vA denotes the rate 571

of transition from aquatic to adult stages, µ̇vA the aquatic mortality, µ̇vV the adult mortality, 572

and θ̇v is the success rate of oviposition. The logistic term (1− A
K(R+1)) can be understood 573

as the ecological capacity to receive aquatic individuals [67], scaled by a carrying capacity 574

term K (R+ 1) in which K determines the maximum capacity and R is the local rainfall 575

contribution (further details on following sections). 576

From equations 6-10, the mean number of viable female offspring produced by one 577

female adult during its life-time, i.e. the basic offspring number Q, was derived (equation 578

11). Most parameters defining Q are climate-dependent, and for fixed mean values of the 579

climate variables (ex. mean rainfall R̄), expressions were derived for the expected population 580

sizes of each mosquito life-stage modelled (A0, V0) which are used to initialize the vector 581

population (equations 12-13). 582

Q =
ε̇vA

ε̇vA + µ̇vA

ċf θ̇v

µ̇vV
(11)

A0 = K
(
R̄+ 1

) (
1− 1

Q

)
(12)

V0 = K
(
R̄+ 1

) (
1− 1

Q

) ˙εvA
µ̇vV

(13)

Viral Transmission 583

In respect to the infected host-type being considered, the vector-to-human (λv→h) and human- 584

to-vector (λh→v) incidence rates are assumed to be, respectively, density-dependent and 585

frequency-dependent (equations 14-15). Here, ȧv is the biting rate and φ̇v→h and φh→v are 586

the vector-to-human and human-to-vector transmission probabilities per bite. Conceptually, 587

this implies that (i) an increase in the density of infectious vectors should directly raise the 588

risk of infection to a single human, while (ii) an increase in the frequency of infected humans 589

raises the risk of infection to a mosquito biting at a fixed rate. The basic reproductive 590

number (R0) is defined similarly to previous modelling approaches (equation 16) [68, 69]. We 591



further derived an expression for the effective reproductive ratio (Re, equation 17), taking 592

into account the susceptible proportion of the population in real-time. 593

λv→h =
(
ȧvφ̇v→hIvSh/N

)
∝ Iv (14)

λh→v =
(
ȧvφ̇h→vIhSv/N

)
∝ Ih/N (15)

R0 =
(V/N) ȧv ȧv φ̇v→h φh→v γ̇v γh

µ̇vV (σh + µh)(γh + µh)(γ̇v + µ̇vV )
(16)

Re = (Sh/N)× (Sv/N)×R0/(V/N) (17)

Markov Chain Monte Carlo Fitting Approach 594

For the fitting process, the MCMC algorithm by Lourenco et al. is here altered to a Bayesian 595

approach by formalising a likelihood and parameter priors [28]. For this, the proposal 596

distributions (q) of each parameter were kept as Gaussian (symmetric), effectively retaining 597

a random walk Metropolis kernel. We define our acceptance probability α of a parameter 598

set Θ, given model ODE output y as: 599

α = min{1, π(y|Θ?)p(Θ?)q(Θo|Θ?)

π(y|Θo)p(Θo)q(Θ?|Θo)
} (18)

where Θ? and Θo are the proposed and current (accepted) parameter sets (respectively); 600

π(y|Θ?) and π(y|Θo) are the likelihoods of the ODE output representing the epidemic 601

data given each parameter set; p(Θo) and p(Θ?) are the prior-related probabilities given 602

each parameter set. We fit the Zika virus cumulative case counts per week, for which no 603

age-related or geographical data is taken into consideration. 604

For computational reasons and based on a previous approach [70], the likelihoods π 605

were calculated as the product of the conditional Poisson probabilities of each epidemic data 606

(di) and ODE (yi) data point: 607

π(y|Θ) =
N∏
i=1

[Pr{yi = di}] (19)

Note, in this case where we have low cases numbers in a large population, the Poisson 608

likelihood represents a reasonable approximation to the Binomial process, which is expected 609

to underlie the observed data. 610

Fitted Parameters 611

With the MCMC approach described above, all combinations of the open parameters in the 612

ODE system that most likely represent the outbreak are explored (Table 4). In summary, 613

the MCMC estimates the distributions for: (1) the carrying capacity K, an indirect estimate 614

of the number of adult mosquitoes per human; (2) time point of the first case t0, assumed to 615

be in a human; (3) a linear coefficient η that scales the effect of temperature on aquatic and 616



adult mortality rates; (4) a linear coefficient α that scales the effect of temperature on the 617

extrinsic incubation period; (5) a non-linear coefficient ρ that scales the effects of humidity 618

and rainfall on entomological parameters; (6) the human infectious period 1/σh; and (7) the 619

human incubation period 1/γh. 620

By introducing the linear coefficients η and α, the relative effect of temperature 621

variation on mortality and incubation is not changed per se, but instead the baselines are 622

allowed to be different from the laboratory conditions used by Yang et al. [66]. For solutions 623

in which η, α→ 1, the laboratory-based relationships are kept. For a discussion on possible 624

biological factors that may justify η and α please refer to the original description of the 625

method in [28] and [71]. Finally, the introduction of ρ allows the MCMC to vary the strength 626

by which entomological parameters react to deviations from local humidity and rainfall 627

means. In practice, the effect of rainfall and humidity can be switched off when ρ→ 0 and 628

made stronger when ρ→ +∞ (details below). 629

Initial analysis of the MCMC output raised an identifiability issue between the human 630

infectious period (1/σh) and the linear coefficient (η) that scales the effect of temperature on 631

vector mortality (η scales the baseline mortality without changes to the response of mortality 632

to temperature). Hence, changes in both η and 1/σh result in similar scaling effects on the 633

transmission potential R0 (equation 16) and thus unstable MCMC chains for η and 1/σh, 634

with the resulting posteriors appearing to be bimodal (for which there was no biological 635

support). We addressed this issue by using informative priors for four parameters for which 636

biological support exists in the literature: η, 1/σh, 1/γh, and α. Gaussian priors were used 637

with means and standard deviations taken from the literature (see Figure 7). 638

Constant Parameters 639

The framework described above has only 4 fixed parameters that are neither climate- 640

dependent nor estimated in the MCMC approach (Table 3). Amongst these, φh→v is the 641

per bite probability of transmission from human-to-mosquito, which we assume to be 0.5 642

[72, 73]; the sex ratio of the adult mosquito population f is assumed to be 1:1 [72, 73]; the 643

life-expectancy of the human population is assumed to be an average of 75 years [74]; and 644

the biting rate is taken to be on average 0.25 although with the potential to vary dependent 645

on humidity levels (details below) [41, 75]. 646

Climate-Dependent Parameters 647

For each of the temperature-dependent entomological parameters, polynomial expressions 648

are found de novo or taken from previous studies fitting laboratory entomological data 649

with temperature (T) values used in Celsius. For rainfall (R) and humidity (U), positive or 650

negative relationships to entomological parameters are introduced using simple expressions, 651

with values used after normalization to [0, 1]. We assume that some parameters are affected 652

by a combination of temperature with either rainfal or humidity, but take their effects to be 653

independent. A list of climate-dependent parameters and references is found in Table 2. 654

Polynomials of 4th degree for the mortality (µvA, µ
v
V ) and success ovipositon (θv) rates 655



are taken from the study by Yang and colleagues under temperature-controlled experiments 656

on populations of Aedes aegypti (equations 19-21) [66]. For aquatic to adult (εvA) rate we 657

use the 7th degree polynomial of the same study (equation 20). For the relationship between 658

the extrinsic incubation period (1/γv) and temperature we apply the formulation by Focks 659

et al. which assumes that replication is determined by a single rate-controlling enzyme 660

[76, 77, 78] (equation 24). The probability of transmission per mosquito bite (φv→h) is 661

here modelled (equation 25) as estimated by Lambrechts and colleagues [79]. Finally, the 662

relationship between temperature and the fraction of eggs that successfully hatch (cv) is 663

estimated de novo (equation 26) by fitting a 3rd degree polynomial to Aedes aegypti and 664

albopictus empirical data described by Dickerson et al. (see Figure 6) [80, 73]. 665

εvA(T ) = 0.131− 0.05723T + 0.01164T 2 − 0.001341T 3 + 0.00008723T 4

−0.000003017T 5 + 5.153× 10−8T 6 − 3.42× 10−10T 7 (20)

µvA(T ) = 2.13− 0.3797T + 0.02457T 2 − 0.0006778T 3 + 0.000006794T 4 (21)

µvV (T ) = 0.8692− 0.1599T + 0.01116T 2 − 0.0003408T 3 + 0.000003809T 4 (22)

θv(T ) = −5.4 + 1.8T − 0.2124T 2 + 0.01015T 3 − 0.0001515T 4 (23)

γv(T ) =
0.003359 Tk298 × exp(15000R ( 1

298 −
1
Tk ))

1 + exp(6.203×10
21

R ( 1
−2.176×1030 −

1
Tk ))

(24)

φv→h(T ) = 0.001044T × (T − 12.286)× (32.461− T )1/2 (25)

cv(T ) = (−184.8 + 27.94T − 0.9254T 2 + 0.009226T 3)/100.0 (26)

We normalise the time series of rainfall (R) and humidity (U), further using the 666

mean normalised values (R̄, Ū) as reference for extreme deviations from the expected 667

local tendencies [81, 67]. Rainfall is assumed to affect positively the fraction of eggs that 668

successfully hatch (cv) [82, 83, 67, 84]. A similar positive relationship is taken for the 669

vector biting rate (av) and humidity levels [75], in contrast to a negative effect on the adult 670

mosquito mortality rate (µvV ) [82]. 671

cv(R) = (R− R̄)/
√

1 + (R− R̄)2 (27)

av(U) = (U − Ū)/
√

1 + (U − Ū)2 (28)

µvV (U) = Ū − (U − Ū)/
√

1 + (U − Ū)2 (29)

Below is the complete formulation for each entomological parameter in time (t), 672

depending on the climatic variables for which relationships are assumed to exist, including 673

the MCMC fitted linear (α, η) and non-linear (ρ) factors described above. 674

εvA(t) = εvA(T ) (30)

µvA(t) = ηµvA(T ) (31)

µvV (t) = ηµvV (T )[1 + µvV (U)]ρ (32)



θv(t) = θv(T ) (33)

γv(t) = αγv(T ) (34)

φv→h(t) = φv→h(T ) (35)

cv(t) = cv(T )[1 + cv(R)]ρ (36)

av(t) = av[1 + av(U)]ρ (37)

Stochastic formulation of the ento-epidemiological model 675

A stochastic version of the ento-epidemiological framework was developed by introducing 676

demographic stochasticity in the transitions of the dynamic system. This followed the original 677

strategy described in [28], in which multinomial distributions are used to sample the effective 678

number of individuals transitioning between classes per time step. Multinomial distributions 679

are generalized binomials - Binomial(n, p) - where n equals the number of individuals in 680

each class and p the probability of the transition event (equal to the deterministic transition 681

rate). This approach has also been demonstrated elsewhere [85]. 682

Source code 683

The approach used in this study uses code in C/C++, bash and R scripts and is available
at https://github.com/lourencoj/ArboWeD2/tree/ArboWeD2V 1.
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Tables 732

Table 1. Literature-based reports on key ZIKV epidemiological and entomolog-
ical parameters.
Parameter / Function Values and Ranges Reported References

Intrinsic incubation period 6.5, 5.9 days [17, 86]

Human infectious period 4.7, 9.9 days [17, 86]

Extrinsic incubation period 8.2, <10, <7 days [17, 87, 88]

Attack rates 74, 50, 73, 94, 52 % [89, 44, 23, 90]

R0 3.2, 2.5, 4.8, 2.05, 2.6-4.8, 4.3–5.8, 1.8-2.0 [89, 91, 25, 23, 19]

Observation rate 0.024, 0.06, 0.03, 0.11 [89, 91, 23]

Table 2. Model climate-dependent parameters.

notation description

εvA(t) transition rate from aquatic to adult mosquito life-stages

µv
A(t) mortality rate of aquatic mosquito life-stage

µv
V (t) mortality rate of adult mosquito life-stage

θv(t) (human) intrinsic oviposition rate of adult mosquito life-stage

γv(t) (vector) extrinsic incubation period of adult mosquito life-stage

φv→h(t) vector-to-human probability of transmission per infectious bite

cv(t) egg hatching success

av(t) adult vector biting rate

Table 3. Model constant parameters.
notation value description references

av 0.25 per day mosquito biting rate [41, 75]

f 0.5 proportion of females (sex ratio) [72, 73]

φh→v 0.5 human-to-vector probability of transmission per infectious bite –

1/µh 75 years human mean lifespan [74]

Table 4. Model estimated parameters.
notation description ranges / priors

t0 time point of first case (in a human) (∞, ∞)

K aquatic carrying capacity (0, ∞)

η linear factor for mosquito mortality (0, ∞)

α linear factor for extrinsic incubation period (0, ∞)

ρ non-linear factor for effects of humidity and rainfall (0, ∞)

σh human infectious period (0, 15)

γh human (intrinsic) incubation period (0, 15)

ζ observation rate (0, 1)
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Figure 6 - Relationship between temperature and egg hatching success. Empirical 734

data on Aedes aegypti’s and albopictus’s egg hatching success (in the model ċ) is taken 735

from [80]. Data includes measurements of hatching for 5 different temperatures above 15 736

Celsius, including 2 wild and 1 laboratory populations for each of the vector-species. Fitting 737

implemented with a third degree polynomial. When modelling, negative proportions below 738

10 Celsius are manually corrected to zero (left of shaded grey line). 739
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Figure 7 - Prior selection and sensitivity. (A1) Priors for the linear coefficients α 741



(scaling factor for effect of temperature on mosquito incubation period - EIP) and η (scaling 742

factor for effect of temperature on mosquito mortality - life-span). Priors follow Gaussian 743

distributions: α with mean = 2.0 and SD = 0.33 (standard deviation); η with mean = 3.0 744

and SD = 0.33. Means and SDs are chosen to obtain biologically relevant ranges on the 745

parameters being scaled (see subplots A2-A3). (A2) With prior set for each coefficient (η, α) 746

as in A1, temperature values of one year from Feira de Santana are used to demonstrate 747

expected variation in the scaled parameters in time. Lines represent the expected mean per 748

day. (A3) Distributions of life-span and EIP for the time period presented in A2. (A1-A3) 749

The selected priors derive into life-span and EIP ranges that are biologically relevant for 750

Aedes mosquitoes, namely that on average the EIP is assumed to be ≈ 7 days and the 751

life-span just below 2 weeks ([40, 41, 42, 43] and Table 1). It should be noted that the priors 752

have been set to be above 1, as we assume that the effects of climate are stronger outside 753

the ideal laboratory conditions for which mathematical relationships have been formulated 754

(see description of the model). (B) Priors for the human incubation and infectious period. 755

Means and SDs based on previous estimations [17]. (A1-A3, B) Distributions are drawn 756

using 20,000 samples. Representative samples of 500 MCMC chain states are available in 757

Supplementary Files 1-6. 758
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Figure 8 - Eco-epidemiological factors and model fit to notified cases. (A) Daily 760

climatic series for rainfall (black), humidity (orange) and mean temperature (purple) for 761

Feira de Santana (FSA). (B) Estimated vector lifespan (green), extrinsic incubation period 762

(EIP, blue) and basic reproduction number (R0, red). Median values are represented by 763

horizontal dashed lines, with around 9 days for the mosquito lifespan, 5 days for the EIP 764

and 2.5 for R0. (C) Resulting Bayesian MCMC fit to weekly (black line: data, blue line: 765

model fit) and cumulative incidence (black line: data, green line: model fit). The grey areas 766

highlight the period before the Zika outbreak, the white areas highlight the period for which 767

Zika virus (ZIKV) notified case data was available, and the yellow shaded areas highlight 768

the period for which mean climatic data was used. 769
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Figure 9 - Sensitivity output for MCMC chains. (A) The last 1.5 million states of a 771

5 million run were sampled (25,000 samples), and the correlation of the states was calculated 772

between the chains of particular parameters (windows of 50 samples for visualization 773

purposes). The correlations present a highly stable behaviour in the MCMC chains. Some 774

parameters, such as the human infectious and latency periods, show no correlation; others 775

show consistently positive or negative correlation. The non-zero correlation is expected 776

between some of the parameters, since fine tuning of certain parameters by the MCMC 777

can be balanced by similar / opposite changes in other parameters, resulting in the same 778

dynamic output; i.e. small identifiability issues are difficult to eliminate from complex ODE 779

models. These correlations may have biological meaning as similar changes in the natural 780

system could follow the relationships herein found. Red dotted lines mark correlation equal 781

to zero. (B) MCMC chains for the 8 estimated parameters. The last 1.5 million states of 782

a 5 million run were sampled (1000 samples). The green dotted lines mark the mean. A 783

subsample of 500 was used to run deterministic and stochastic simulations, submitted in 784

spreadsheet tables as supplementary material. 785
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Figure 10 - Eco-epidemiological factors and model fit to notified cases when 787

using 2 observation rates. (A) Resulting Bayesian MCMC fit to weekly (black line: data, 788

purple line: model fit) and cumulative incidence (black line: data, grey line: model fit). The 789

grey area highlights the period before the Zika outbreak, the white areas highlight the period 790

for which notified case data was available.(B) Climatic series and estimated R0 for the 791

period of the outbreak (2015-2017), normalised to 1 for visualization purposes (R0 absolute 792

values in suplot B). (C) Fitted and projected epidemic attack rate (% population infected, 793

green), basic reproduction number (R0, red) and effective reproduction number (Re, blue). 794

Grey shaded area represents the period after the last available notified case. (D) Posteriors 795

for the observation rate of 2015 (left) with median 0.0034 (95% CI [0.0033-0.0035]) and the 796

observation rate for 2016 and onwards (right) with median 0.01395 (95% CI [0.0089-0.0264])). 797
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52. Faria NR, Quick J, Claro I, Thézé J, de Jesus JG, et al. (2017) Establishment and
cryptic transmission of Zika virus in Brazil and the Americas. Nature 546: 406–410.

53. Mordecai E, Cohen J, Evans MV, Gudapati P, Johnson LR, et al. (2016) Temperature
determines Zika, dengue and chikungunya transmission potential in the Americas.
bioRxiv : 63735.

54. Cuong HQ, Hien NT, Duong TN, Phong TV, Cam NN, et al. (2011) Quantifying
the Emergence of Dengue in Hanoi, Vietnam: 1998–2009. PLoS Neglected Tropical
Diseases 5: e1322.

55. Hii YL, Zhu H, Ng N, Ng LC, Rocklov J (2012) Forecast of dengue incidence using
temperature and rainfall. PLoS neglected tropical diseases 6: e1908.



56. Xuan LTT, Van Hau P, Thu DT, Toan DTT (2014) Estimates of meteorological
variability in association with dengue cases in a coastal city in northern Vietnam: An
ecological study. Global Health Action 7: 1–7.

57. Kraemer MUG, Faria NR, Reiner RC, Golding N, Nikolay B, et al. (2016) Spread
of yellow fever virus outbreak in Angola and the Democratic Republic of the Congo
2015–16: a modelling study. The Lancet Infectious Diseases 3099: 1–9.
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