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Complications arising from malaria are a concern for public health authorities worldwide,

since the annual caseload in humans usually exceeds millions. Of more than 160

species of Plasmodium, only 4 infect humans, with the most severe cases ascribed

to Plasmodium falciparum and the most prevalent to Plasmodium vivax. Over the past

70 years, since World War II, when the first antimalarial drugs were widely used, many

efforts have been made to combat this disease, including vectorial control, new drug

discoveries and genetic and molecular approaches. Molecular approaches, such as

glycobiology, may lead to new therapeutic targets (both in the host and the parasites),

since all interactions are mediated by carbohydrates or glycan moieties decorating

both cellular surfaces from parasite and host cells. In this review, we address the

carbohydrate-mediated glycobiology that directly affects Plasmodium survival or host

resistance.
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INTRODUCTION

Malaria is caused by a protozoan of the Plasmodium genus, which belongs to the Apicomplexans
phylum, an obligatory parasite (Kishore et al., 2013). Only in the last two decades has there been a
significant reduction in malaria caseloads, and, according to the latest World Health Organization
(WHO) records, cases have dropped significantly, i.e., from 262 million in 2000 to 214 million in
2015 (WHO, 2015). It is still a serious condition, however, noteworthy when compared to other
pathologies of equal importance worldwide, due to its high prevalence (Binns and Low, 2015).
Efforts toward the elimination of malaria involve the extermination of its vectors, and parasites and
universal access to prevention (diagnosis and earlier treatment); this includes the discovery of new
drugs, to deal with the high number of drug-resistant strains (Tanner and Hommel, 2010; Feng
et al., 2016).

The first malaria drug treatments began with the use of quinine as the active ingredient (Parola
and Miller, 2002). During World War II, a quinine-derivative, chloroquine, was widely used and
treated as a “top secret” (Loff and Cordner, 1999; Skvara, 2004). Chloroquine was associated with
many benefits (low cost, efficacy, and safety) (Kofoed et al., 2003; Savarino et al., 2006). Quinine-
based drugs were replaced by Artemisinin derivatives and other drugs; and the use of Artemisinin-
based Combined Therapies (ACT) is now recommended (Visser et al., 2014; Watsierah and Ouma,
2014; Pousibet-Puerto et al., 2016) to eliminate the blood phases, since in the exoerythrocytic phase
(asymptomatic phase), there are no obvious symptoms for early treatment (Imrie et al., 2007).

Most of these drugs are still in use today in different doses, depending on the infective species
and host background (Achan et al., 2011). Resistance is usually accompanied by a range of genetic
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diversity, and a high level of polymorphism, crucial to spreading
these infective parasites but also after the widespread use of
drugs, the first resistance-cases have appeared, and it seems that
drugs have an “expiration date” this has also been observed
in different malaria-infected patients in different regions, such
as Thailand and Papua New Guinea (Cui et al., 2003; Brito
and Ferreira, 2011). For example, Plasmodium falciparum
shows high antigenic variation, with more than 60 coding
variations of the P. falciparum erythrocyte membrane protein
1 (PfEMP-1), directly related to the virulence and lethality
of the infection of this species (Arnot and Jensen, 2011).
On the other hand, may present variations in the merozoite
surface protein MSP-3α is a multi-gene family important in
P. falciparum and Plasmodium vivax, acting as “decoys” for
antigenic diversity during RBCs invasion (Rice et al., 2014). CSP
genes or circumsporozoite protein (CSP) in sporozoite surface,
thrombospondin-related anonymous protein/sporozoite surface
protein 2 (TRAP) or else in P. vivax apical membrane antigen
1 (AMA1) in ectodomain and C-terminal region of MSP-1 as
a immunodominant antigen that was studied with recombinant
protein (MSP119) as a novel potential vaccine (Rocha et al.,
2017) and liver stage antigen (LSA1) also studied in malaria
vaccine approaches (Pichyangkul et al., 2008).Thus, these and
many more key proteins at each Plasmodium stage open up the
“branches” for studies of this type of interactions, as seen in
glycobiology.

CARBOHYDRATES IN MALARIA:

APPROACH FOR POTENTIAL DRUG

TARGET DISCOVERY

Glycosaminoglycans (GAGs) are abundant in both host and
parasites; they are composed of basic units of carbohydrates
that rearrange themselves in various ways, changing function
and location (Griffin and Hsieh-Wilson, 2013). Glycobiological
approaches investigate the influence of these carbohydrates on
host-parasite binding interactions, such as glycolytic enzymes
that are adequate in predicting a good understanding of
parasite metabolism and glycosylation of malaria proteins.
The first evidence about sugars mediatING the parasite-
red blood cell invasion was cited by Miller et al. (1977).
Experiments determinated that O-linked oligosaccharides, such
as NeuNAc and GalNac, were found in high concentration
(20 mM) and inhibited the parasite intracellular invasion
in RBCs (Pasvol, 1984). Other sugars such as Gal (β1-
3) GalNAc disaccharide associated with glycophorin was
more inhibitory in the same context (Hermentin et al.,
1984).

Thus, these tools give support to studies currently in
development in this regard. In addition, some pathogen-
associated molecular patterns (PAMPs) consist primarily of
carbohydrates structures, although these are not yet well
known or understood in malaria parasites (Hoving et al.,
2014). However, recently, the most discussed PAMPs are GPI
anchores, haemozoin, and immunostimulatory nucleic acid
motifs (Gazzinelli et al., 2014).

Other crucial receptor crucial, that requires specific receptor-
ligand interactions to RBC invasion and cytoadherence in
malaria, is Duffy-binding-like domains (DBLs). In P. vivax and
P. knowlesi, parasites invade RBC exclusively through the DARC
receptors (Duffy antigen receptor for chemokines). However, in
P. knowlesiDBL domain (Pkalpa-DBL) to due a immune pressure
they seems development a evasion strategy to run away, mapping
to opposite surface of the DBL.

Spitzmuller and Mestres (2013) addressed the design of
a generation of new antimalarials drugs. A major challenge
is to identify P. falciparum proteins, among million possible
combinations that can be targeted at the same time by the
just one drug. In their studies, they analyzed databases and
to identify drugs with multi protein targets, because the
drugs until now supported specific protein targets, which in
a few time allows the parasite to mutate only at this target
reaching. Unlikely, Artemisinin which is regarded as a multi-
target drug, maintaining as a new generation drug and which
is advocated throughout malaria treatment (Spitzmuller and
Mestres, 2013).

Still regarding innate immunity, there are two major
families of pattern recognition receptors (PPR) predominantly
expressed by cells of innate immune system are TLRs and
C-type lectin receptors (CLRs). CLRs are important for the
immune response against parasites, and in some studies example
has been observed that, for example, CLRs are related with
cerebral malaria in mice infected by Plasmodium berghei,
and CARD9 is upregulated, but CARD9−/− mice were not
protected from infection, suggesting that the CARD9 receptor
influences infectivity by the plasmodium but in its absence
(as demonstrated in knockout animals) does not prevent the
disease from occurring (McGuinness et al., 2003). Another study
conducted with P. chabaudi demonstrated that the mannose
receptor C type 2 (MRC2) increased with parasitemia, but toll-
like receptors and sialoadhesin decreased in contrast to other
MRCs (1 and 2), and that decreased with parasitemia in P. yoelii,
suggesting the importance of lectin-receptors in the development
of mounting of the immune response (Rosanas-Urgell et al.,
2012).

Studies regarding parasite sugar supply demand has increased
in the last decades, given that Plasmodium parasites require
a high sugar demand to replicate. These parasites also show
the ability to manipulate vector behavior to ensure survival,
including increased sugar seeking, although it is unclear how
this manipulation affects vector-plant interactions and sugar
uptake (Nyasembe et al., 2014). Parasite manipulation in
search of sugar supplies has been described as established
at the moment of vector infection. Plasmodium present in
the bloodstream require glucose, which crosses the plasma
membranes and enters the parasite cytosol (Coppi et al.,
2005; von Itzstein et al., 2008; Bertolino and Bowen, 2015;
Swearingen et al., 2016). The parasites are able expose the
RBC hexose transporter to facilitate sugar nucleotide uptake,
allowing Plasmodium to biosynthesize certain glycans for
maintenance (Cova et al., 2015). After the release of the
sequence in the PlasmoDB, database facilitated the search
for tools in interventions in this receptor for therapeutic
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purposes. The hexoses receptor (PfHT) has been widely studied,
because its decrease implies in the lower supply of glucose to
parasites and causing the plasmodium elimination (Bahl et al.,
2003).

The surface of infected red blood cells (RBCs) are rich
in glycophorins and Plasmodium possesses some proteins like
erythrocytes binding-like (EBL) and reticulocyte binding-like
(Rh) protein families that recognize them, playing a critical
role in attachment in invasion (Davidson and Gowda, 2001;
Salinas et al., 2014), Studies demonstrated that glycophorins
as play crucial role in Plasmodium invasion, in absence of
glycophorins A relatively resistant to the invasion in red
blood cells (Pasvol, 1984). Other portion of glycophorin
A has sialic acid residues, which is known as EBA-175
(175 kDa), and it mediates binding of P. falciparum to
RBCs. A part of this, EBA-175 is highly conserved and
rich in cysteine, is referred to as F2 (PfF2) and it has
receptor binding sites that have been studied as a possible
recombinant protein in malaria vaccines trials (Pattnaik et al.,
2007).

In Tham et al. (2015) the cytoplasmatic tails of these
proteins were phosphorylated in vitro and blocked RBC invasion,
evidencing the importance of these proteins for invasion (Tham
et al., 2015).

In addition to studies on the interactions between the parasite
and carbohydrates in RBCs, it has been demonstrated that blood
type (ABO, Lewis, Duffy, and others surface antigens) influences
erythrocyte parasitism, with certain types more susceptible to
Plasmodium infection (Cooling, 2015). Studies indicate that
individuals of blood group A are highly susceptible to P.
falciparum induced-malaria, while blood group O has been
shown to be protective against complicated cases (Fischer and
Boone, 1998; Lell et al., 1999). The CSP and TRAP domains
on the sporozoite that mediate the adhesive contact with
the sulphated glycoconjugates on the surface of hepatocytes
allow plasmodium invasion to the bloodstream. Thus, these
proteins are extremely important for the parasite, since it
is from the entry in the hepatocytes that the cycle begins.
Taking this into account, these same proteins have been
studied extensively, including in the manufacturing of anti-
malarial vaccines, such as RTS,S (Coppi et al., 2005; Swearingen
et al., 2016). Despite having obtained good results in treating
mice with anti-CSP, it has been verified that, in the absence
of this protein, the cycle of hepatocyte invasion continues
normally, since after invasion CSPs are less expressed, while
other proteins become highly expressed (Bertolino and Bowen,
2015).

As the Plasmodium parasite uses sugar-requirements to ensure
survival, approaches with drug-targeting carbohydrates have
increasingly been proposed as possible treatments. Regarding
in vitro studies, Plaimas et al. (2013) investigated a database
of genetic information from Plasmodium to try to decipher
which points of the proteins expressed could be future of
therapeutic targets. 22 potential targets, refined the search
by removing false positives, leaving only 5 targets, among

them, glutamyl-tRNA (gln) aminotransferase and with a known
inhibitor of this transferase 6-diazo-5-oxonorleucine (Don). The
tests were carried out and the growth of the parasite decreased
both in vitro and in vivo in Swiss mice, despite the side
effects related to the dosage (Plaimas et al., 2013). Similar
results have recently been observed with DON in experimental
cerebral malaria mice models, although this compound has
shown inhibitory effects by blocking CD8+ T-cell effector
function, which is the highest cause of mice death (Gordon
et al., 2015). On the other hand, other studies indicate that
mice mortality was attenuated due to GPI anchors, not T
cells, since several literature reports indicate the importance
of glycophosphatidylinositol (GPI) anchors for the success of
Plasmodium infection (Naik et al., 2000). CSP have also been
associated to GPI, which have a canonical domain in the COOH
portion, although this has not yet been demonstrated (Coppi
et al., 2005).

Of significance, people living in endemic areas are more
resistant to malaria, due to the production of antibodies against
GPI anchors (Vijaykumar et al., 2001).

In addition to inhibitors that hinder this type of parasite-
host interaction, mice immunized with the glycan moiety of
GPIs were able to produce anti-GPI antibodies to prevent
progression to cerebral malaria (Schofield et al., 2002). It has
been reported that a microbial polyssacharide, Gellan Gum
(GG), containing a sugar moiety produced by the Sphingomonas
(Pseudomonas) elodea bacterium, strongly inhibited parasite
invasion; this also inhibits growth (strains 3D7 and Dd2),
demonstrating that “natural” sugars can also contain Plasmodium
effects (Recuenco et al., 2014). In human malaria, successive
pregnancies contribute to resistance against Plasmodium, which
mediates binding to chondroitin sulfate A (CSA) in the placenta
through the VAR2CSA protein (Salanti et al., 2004; Gamain
et al., 2005); this leads to accumulation of Plasmodium parasites
in the placenta, resulting in severe clinical consequences for
both mother and child (Resende et al., 2008), such that the
investigation of this interaction is a viable target for vaccines
(Clausen et al., 2012; Fried and Duffy, 2017). Through all this
information about the various receivers composed by sugar
and the interactions required these reinforce the importance of
deciphering the nature of glycan functions in malaria in order to
improve approaches for predicting drug-target interactions for
this complex.
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