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ABSTRACT

Chagas disease is caused by the protozoan Trypanosoma cruzi. The parasite reaches the secondary lymphoid organs, the
heart, skeletal muscles, neurons in the intestine and esophagus among other tissues. The disease is characterized by mega
syndromes, which may affect the esophagus, the colon and the heart, in about 30% of infected people. The clinical
manifestations associated with T. cruzi infection during the chronic phase of the disease are dependent on complex
interactions between the parasite and the host tissues, particularly the lymphoid system that may either resultin a
balanced relationship with no disease or in an unbalanced relationship that follows an inflammatory response to parasite
antigens and associated tissues in some of the host organs and/or by an autoimmune response to host antigens. This
review discusses the findings that support the notion of an integrated immune response, considering the innate and
adaptive arms of the immune system in the control of parasite numbers and also the mechanisms proposed to regulate the
immune response in order to tolerate the remaining parasite load, during the chronic phase of infection. This knowledge is
fundamental to the understanding of the disease progression and is essential for the development of novel therapies and
vaccine strategies.
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INTRODUCTION sitemia that increases after 1-8 weeks following infection, de-
pending on the T. cruzi strain (Cardillo et al. 1996). However, the
immune response induced during the acute infection is not suf-
ficient to completely eradicate the pathogen, thus resulting in
chronic infection (Albareda et al. 2006). The chronic form of the
disease mainly affects the peripheral autonomous nervous sys-
tem in the gastrointestinal tract and heart and the heart mus-
cle in approximately 30% of the infected patients (Koberle 1968;

The intracellular protozoan parasite Trypanosoma cruzi causes
Chagas’ disease in humans (Koberle 1968; Andrade, Gollob and
Dutra 2014). The infection is characterized by an acute phase
resulting in parasitemia that resolves upon the appearance of
an effective immune response (Cardillo et al. 2002). In humans
and mice, the acute infection is characterized by high para-
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Andrade, Gollob and Dutra 2014). The chronic infection may be
accompanied by additional autoimmune mechanisms triggered
by the parasite and its persistence (dos Santos et al. 1992; Men-
gel and Rossi 1992; Bonney and Engman 2008, 2015; Cunha-Neto
et al. 2011). Yet, the majority (about 70%) of the patients that
progress to the chronic phase remain clinically asymptomatic
in the chronic phase of the infection. This condition character-
izes the indeterminate form, known as early-indeterminate dis-
ease, usually seen in infected children and adolescents, and late-
indeterminate disease, generally observed in infected adults
(Umezawa et al. 2001).

In this review, we discuss the molecules, cells and possi-
ble mechanisms involved in the potentiation and/or the con-
trol/downregulation of the immune response during T. cruzi in-
fection.

CELLS AND MOLECULES THAT PROMOTE
IMMUNITY IN THE ACUTE PHASE
OF T. CRUZI INFECTION

Initial IFN-y production prior to the generation of T-cell-
mediated adaptive immunity is known to occur during the
course of many infections and may be important in the de-
velopment of resistance to many intracellular infections such
as Leishmania, Salmonella, Toxoplasma and T. cruzi (Locksley and
Scott 1991; Ramarathinam, Niesel and Klimpel 1993; Sher et al.
1993; Cardillo et al. 1996). Natural killer cells may be the major
cell type responsible for IFN-y production in the early stages of
T. cruzi infection and their activation requires the presence of
live parasites (Cardillo et al. 1996). In addition, innate or adap-
tive immune cells, such as dendritic cells, macrophages, NKT
lymphocytes, y§ T cells and B cells, may contribute to host re-
sistance (Locksley and Scott 1991; Sher et al. 1993; Cardillo et al.
1996; Galli et al. 2003, 2007; Takahashi and Strober 2008).

Dendritic cells (DCs) and/or macrophages act as professional
antigen-presenting cells and are central in the initiation and de-
velopment of immunity or tolerance (Lanzavecchia and Sallusto
2001; Steinman, Hawiger and Nussenzweig 2003). Trypomastig-
otes are responsible for the generation of regulatory DCs in vitro
(Sher et al. 1993; Poncini et al. 2008; da Costa et al. 2014). The pro-
duction of TNF-«, IFN-y, IL-12, IL-22, IL-6, IL-10 and CCL2 and
the expression of CD40, CD80, MHC-II, PD-L1, CCR5 and CCR7
may be different, depending on the T. cruzi strain used for stim-
ulation (Poveda et al. 2014; da Costa et al. 2014). These results
strongly argue that DCs, monocytes and macrophages are active
players in the modulation of the adaptive immune response to
T. cruzi (Rezende-Oliveira, Sarmento and Rodrigues 2012; Pinho
et al. 2014) and may be useful to manipulate immunity/tolerance
either before or during the infection (Poncini et al. 2015; Rampazo
et al. 2015).

NK1.1+ cells may participate in generating memory T cells,
since their depletion in acute infection diminished the gener-
ation of the activated/memory T cells in the spleen of T. cruzi-
infected mice (Cardillo et al. 2002). In fact, this resulted in larger
numbers of T cells expressing CD69, without the correspond-
ing formation of effector T cells (Cardillo et al. 2004). Further-
more, the depletion of NK1.1+ cells caused an earlier appear-
ance of anti-T. cruzi IgM antibodies and less isotype switching to
IgG at later time points, suggesting a diminished T-cell-helper
response (Cardillo et al. 2002). However, these studies did not
discriminate between CD3- and CD3+ NK cells, as they were
performed with depleting monoclonal antibodies to the NK1.1
molecule.

Other studies using CD1 and/or V alpha 14 knockout mice
have shown that natural killer T cells (NKT cells) may play more
discrete or opposing functions during the acute phase of T. cruzi
infection (Duthie et al. 2002; Procopio et al. 2002; Miyahira et al.
2003; Duthie et al. 2005a,b), but the net results point to a role
of these cells in resistance to T. cruzi infection. However, the
mechanisms by which these cells contribute to the immune re-
sponse to acute infection are not clear yet and might also in-
volve a regulatory function, dampening T-cell hyperactivation,
and IFN-y and NO production (Cardillo et al. 2004). Activated NK
cells, bearing a particular phenotype (CD16 + CD56-), were found
to increase during the acute phase of Chagas’ disease in chil-
dren (Sathler-Avelar et al. 2003). However, the exact mechanism
used by NK cells to help in the control of the infection in hu-
mans is not clear. The mechanism might rely on the secretion
of cytokines such as IFN-y and TNF-« by parasite activated NK
cells, thus amplifying the innate and/or the adaptive immune
responses (Andrade, Gollob and Dutra 2014).

Another T-cell lineage that might be involved in up- or down-
regulation of the immune response to T. cruzi during the acute
phase of the infection is the y§ T lymphocyte (Cardillo et al.
1993; Nomizo et al. 2006). y§ T cells are not homogeneous and
their functions may vary depending on T-cell receptor usage and
different stimulatory conditions (Chien and Hampl 2000; Chien,
Meyer and Bonneville 2014). A small subpopulation, bearing the
Vy1 chain, is found in the thymus and in the secondary lym-
phoid organs such as the spleen, lymph nodes and the GALT of
the adult mouse (Azuara et al. 1997, 2001; Azuara, Lembezat and
Pereira 1998; Azuara and Pereira 2000). Part of this subset also
expresses NK1.1 molecules (Azuara et al. 1997) and the admin-
istration of a monoclonal antibody to the Vy1 chain results in
increased susceptibility to T. cruzi infection (Nomizo et al. 2006).
These cells appear to function as helpers for conventional CD4 T
cells, increasing the formation of memory T cells and their IFN-
y production. Taken together, the previously mentioned studies
show that the NK1.1+ cell subset is composed by different lin-
eages, having complex functions (Werner et al. 2011). In spite of
this, these cells may function by helping conventional T cells
to fully differentiate into memory cells, since in their absence
conventional T cells might accumulate in an early stage of acti-
vation. This would lead to elevated production of inflammatory
cytokines and oxygen-containing toxic molecules in peripheral
lymphoid organs, since these cells do not migrate efficiently to
infected tissues and are ineffective parasite killers in infected
tissues. The overall result would be immune hyperactivation ac-
companied by poor parasite growth control and early death of
the host (Cardillo et al. 2004).

B lymphocytes are also required to mount an effective im-
mune response to T. cruzi, helping in the control of the infection
(Cardillo et al. 2007; Sullivan et al. 2015). The disease in C57BL/6
muMT KO mice is more severe than in control mice, with higher
parasitemia levels and a poor generation of central and effec-
tor memory CD4+ and CD8+ T cells in the spleen. During early
stages of the T. cruzi infection, B cells are fundamental to trig-
ger T-cell functions related to the Th1 pathway that favor the
control of parasite growth (Cardillo et al. 2007). Therefore, in the
absence of mature B cells, the immune system is unable to gen-
erate and/or maintain central and effector memory CD8+ T cells
and to instruct a Th1 functional pattern of T-cell cytokines, since
the levels of proinflammatory cytokines such as IFN-y and IL-12
are reduced in spleen cell supernatants from mice lacking ma-
ture B cells (Cardillo et al. 2007). Tissue inflammatory responses
in these mice are much less intense in the acute phase of the
infection, which is consistent with a deficit in the generation of



effector T cells. Furthermore, the preponderant cell type in the
skeletal muscle inflammatory infiltrate is the CD4+ T cell, con-
trary to what is observed in B-cell-sufficient mice, where CD8+
T cells dominate in the inflammatory infiltrate (Cardillo et al.
2007). Adoptively transferred splenic B cells induce increased
numbers of both effector/memory splenic CD4 and CD8 T cells,
during early chronic infection (Cardillo et al. in preparation). Ac-
cordingly, it has been reported that the development, mainte-
nance and functional activities of memory CD8+ T cells during
immune responses are dependent on the generation of memory
CD4+ T cells and B cells (Williams et al. 2006; Sullivan et al. 2015).
Besides, it has been described that B cells may themselves pro-
duce many different cytokines upon stimulation, including IFN-
y, IL-10, IL-12, IL-17 and BAFF/BLyS (O’Garra et al. 1990; Mengel
et al. 1992; Pang et al. 1992; Veras et al. 2006; Wojciechowski et al.
2009; Amezcua Vesely et al. 2012; Bermejo et al. 2013). In addi-
tion, in the chronic phase of T. cruzi infection one may speculate
that B cells modulate the immune response through IL-10 pro-
duction, since the transfer of B cells from IL-10 knockout mice to
mu knockout mice helps to control the acute infection, but also
leads to an increased inflammatory heart disease in the chronic
phase (Cardillo et al. in preparation). Regarding this topic and
until recently, virtually no report addressed the real phenotypic
markers of B cells producing IL-10, in humans. Thus, the CD19+
CD5+ CD1d+ IL-10+ B cells were found to be increased in chronic
chagasic patients. In addition, a higher expression of CD21 and
CD24 on the surface of circulating CD19+ B cells has been shown
in those patients. The study also showed that the expression of
MHC-II (HLA-DR), CD80, CD86, caspase-3, granzyme B and intra-
cellular IL-10 and TGF-8 by CD19+ B cells was higher in patients
with chronic Chagas disease (Fares et al. 2013).

In summary, in T. cruzi experimental infection, with the Tu-
lahuen strain, the development and function of memory CD8+
and CD4+ T cells are greatly modulated by NK1.1+ and B cells,
since lower numbers of memory T cells are formed in acute in-
fection when these subsets are absent. In addition, high parasite
load has been observed in NK1.1 cell- or B-cell-depleted mice,
indicating that the conversion of activated to effector memory
cells is an important step in the control of infection levels and
mortality.

The initial magnitude of CD8+ T-cell responses appears to
be one of the critical factors in determining the final size of the
antigen-specific memory T-cell pool (Olivieri, Cotta-De-Almeida
and Araujo-Jorge 2002; Williams et al. 2006; Bixby and Tarleton
2008; Bustamante, Bixby and Tarleton 2008; Miyahira 2008). Cen-
tral memory CD8+ T cells, expressing high levels of CD44 and
CD62L and reduced expression of KLRG1, a marker of repetitive
antigen stimulation and cell exhaustion (Bustamante, Bixby and
Tarleton 2008), are detectable in the late acute phase among the
parasite-specific CD8+ T cells, being related to the low parasite
load found in the chronic phase of T. cruzi infection. Therefore,
it seems that the central memory CD8+ T-cell population in-
creases as the infection becomes chronic and this pool may be
important to dynamically replace cells in the memory/effector
T-cell pool, as previously suggested (Sallusto et al. 2010). Interest-
ingly, treatment with benznidazole during the acute phase of the
infection lowers the parasitemia and also induces a stable pool
of central memory CD8+ T cells (Olivieri, Cotta-De-Almeida and
Araujo-Jorge 2002; Bixby and Tarleton 2008). In addition, an in-
crease in total effector/memory CD8+ T cells in T. cruzi-infected
subjects has been reported (Leavey and Tarleton 2003; Fiuza et al.
2009). However, the authors also claimed that these cells would
be dysfunctional and this could be a consequence of a gradual
clonal exhaustion in the CD8+ T-cell population, perhaps as a
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result of continuous antigenic stimulation by persistent para-
sites (Leavey and Tarleton 2003). This study also showed an in-
crease in the numbers of effector memory CD8+ T cells as the
disease progresses, suggesting that the central memory T-cell
pool could be, in fact, a source of effector memory T cells. Con-
sequently, its depletion may worsen the disease by increasing
tissue parasite load during the chronic phase of the infection,
since the accumulation of effector/memory CD8 T cells would
be less effective in controlling the infection because they would
be functionally exhausted. However, in another series of experi-
ments, resistance in the acute phase of murine T. cruzi infection
correlated with higher percentages of effector/memory T cells
prior to infection (Cardillo et al. 2002). This was the case for ma-
ture/aged or thymectomized mice, where T cells are submitted
to homeostatic expansion due to thymic hypofunction and ac-
quire memory/effector markers (Cardillo, Nomizo and Mengel
1998; Cardillo et al. 2002). In fact, the levels of effector/memory T
cells could be inversely correlated with host susceptibility, since
the higher the numbers of effector/memory T cells found in ma-
ture/aged or thymectomized mice, the lower their susceptibil-
ity (Cardillo et al. 1993, 2002). Therefore, it appears that effec-
tor/memory T cells are required to control infection, but a pool of
central memory T cells is also important to replenish exhausted
effector/memory T cells. The restricted availability of reagents
to follow parasite specific T cells has hampered more detailed
studies, aiming at the evaluation of memory T cells during the
acute Chagas’ disease. However, after culturing mononuclear
cells from chronic patients with T. cruzi extracts, we have found a
preferential in vitro expansion of CD4 + VB5+ T cells. In addition,
we have shown a decrease in VA5 expression in the CD4+ T-cell
population freshly isolated from acutely infected chagasic indi-
viduals, probably reflecting tissue redistribution rather than de-
pletion, whereas CD4 + V354 T cells were found to be increased
in a subset of chronic chagasic patients (Costa et al. 2000). As a
whole, the results showed a differential VA-TCR usage in differ-
ent stages of the disease, and that parasite antigens stimulate
a portion of the T-cell repertoire with preferential usage of Vg5-
TCR. Therefore, CD4 + VB5+ T cells are a unique population of
CD4 T cells to be analyzed in future studies, regarding the dy-
namics of memory T-cell formation in humans.

HOW (AUTO)IMMUNITY IS CONTROLLED
DURING T. CRUZI INFECTION

As pointed out above, T. cruzi induces a strong immune response
against its own components, but the infection also induces a
measurable immune response to host self-antigens (dos San-
tos et al. 1992; Bonney and Engman 2008; Bonney and Engman
2015). Antigenic mimicry between parasite antigens and host
antigens may underlie the reasons for the anti-host autoim-
mune response (Wood et al. 1982; Duranti et al. 1999; Cunha-
Neto et al. 2006). However, antigenic mimicry and immune cross-
reactivity among parasite antigens and host antigens are not
always deleterious and may even be beneficial to a balanced
parasite/host relationship (Pontes-de-Carvalho et al. 2013; Mas-
silamany, Gangaplara and Reddy 2015). Therefore, a malfunc-
tion of regulatory immune mechanisms may also be involved in
the autoimmune responses during the infection (Cardillo et al.
1993, Cardillo, Nomizo and Mengel 1998; Mariano et al. 2008).
It is debatable whether the autoimmune response found dur-
ing the T. cruzi infection is actually the causative factor lead-
ing to organ damage during the chronic phase of the disease
(Cunha-Neto et al. 2011). However, both the immune response
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to parasite antigens and host self-antigens are not dissociated
and occur concomitantly (Gattass et al. 1988; Cunha-Neto et al.
2011), and therefore should both be considered as promoters of
tissue lesion during infection. A similar condition is found in
autoimmune inflammatory bowel diseases (IBD), which ame-
liorate with the use of antibiotics, suggesting a role for bacte-
ria as an important factor for the disease initiation or persis-
tence (Sokol 2014). Yet, in IBD there is a considerable overlap be-
tween immunity and autoimmunity (Cassinotti et al. 2014). This
means that it is not just an infection per se that may trigger au-
toimmunity, but an infection that is inappropriately dealt with
(Sester et al. 2015). Nevertheless, in most of the chronically T.
cruzi-infected patients, a perfectly balanced immune response
is achieved and pathology is never manifested (Rassi, Rassi and
Marin-Neto 2010). In addition, it has been described that sus-
ceptibility to T. cruzi infection might reflect an overreactive host
immune response that kills most of the susceptible individu-
als without being effective in the control of the parasite load
(Nascimento et al. 2002; Cardillo et al. 2004). In any of the cases
described above, regulatory mechanisms are at the core of the
problem, either dealing with resistance/susceptibility in acute
infection or health/disease during the chronic phase.

Many cells and molecules have being described to have regu-
latory/suppressor activity during T. cruzi infection (Cardillo et al.
1993; Lopes and Reis 1994; Abrahamsohn and Coffman 1995;
Pinge-Filho et al. 1999; Cuervo et al. 2011). For instance, splenic
adherent cells or macrophages were described to suppress T-
cell responses in vitro, by the release of mediators such as
prostaglandins (Pinge-Filho et al. 1999) and nitric oxide (Abra-
hamsohn and Coffman 1995). More recently, myeloid-derived
suppressor cells (MDSCs) were claimed to be responsible for con-
trolling or suppressing immune responses during acute T. cruzi
infection (Cuervo et al. 2011; Goni, Alcaide and Fresno 2002; Aro-
cena et al. 2013).

In another series of experiments, using mice of the BALB/c
genetic background, we were the first to demonstrate that y$
T cells were involved in the suppression of immune responses
during the acute phase of T. cruzi infection in vitro and in vivo
(Cardillo et al. 1993; Cardillo, Nomizo and Mengel 1998). The in
vivo depletion of y§ T cells by an anti-§ monoclonal antibody
(Costa et al. 2015) raised the levels of IFN-y produced by «B
T cells in the acute infection similarly to the in vivo blocking
of IL-17 (Matta Guedes et al. 2010), and promoted the recovery
of a third party humoral immune response to ovalbumin dur-
ing the acute T. cruzi infection (Cardillo, Nomizo and Mengel
1998). The y§ T-cell suppressor activity was absent in the spleens
of thymectomized and aged mice, suggesting that those cells
were dependent upon an intact thymic function (Cardillo et al.
1993; Cardillo, Nomizo and Mengel 1998). Thymic output of naive
T cells clearly downmodulated effector responses, since the
continuous administration of thymocytes to either aged mice,
young thymectomized mice or total spleen cell-reconstituted
athymic mice markedly decreased splenic cell proliferation to
non-specific stimulation and increased parasitism in recipient
T. cruzi-infected mice (Cardillo, Nomizo and Mengel 1998). More
recently, one study described that T cells bearing the Vy4 TCR
chain were responsible for producing large amounts of IL-17, re-
sulting in an increase of MDSCs that had the ability to downreg-
ulate pathogen-responsive T cells, contributing to parasite per-
sistence (Konget al. 2014). Additionally, these Vy4 T cells are pro-
duced and exported by the thymus as IL-17 producers (Schmolka
et al. 2013). Some y§ T-cell subpopulations, again through the
production of IL-17, were also implicated in the augmentation of
MDSC numbers in tumor microenvironments, either in mice or

humans, promoting tumor growth by opposing cancer immuno-
surveillance (Rei et al. 2014; Wu et al. 2014). It should be pointed
out that most, if not all, y§ T cells in lymphoid organs of the
murine BALB/c background produced only IL-17 and no IFN-y, in
contrast to other mouse strains where these cytokines are pro-
duced by different y§ T-cell subpopulations (Wakita et al. 2010).
Consequently, the overall function of yé T cells during T. cruzi
infection might be dependent on the genetic background where
both T. cruzi and mouse strains should be considered. Therefore,
it seems that a subpopulation of y§ T cells, producing high lev-
els of IL-17, is the candidate to modulate the numbers of MDSCs
that might be the final suppressor cells in the acute phase of T.
cruzi infection.

It should be pointed out that the mechanisms described
above are easily detected along the acute phase of the infec-
tion and vanish after parasite growth is controlled or during the
chronic phase of the disease. Therefore, they are less likely to
perform these regulatory functions during the chronic infection
and in fact, there is no evidence that these mechanisms are op-
erative after the infection is controlled.

The contribution of other regulatory cell populations such as
Trl and Treg (CD4 + CD25 + Foxp3+) T cells to the immune re-
sponse modulation, during the acute infection, is not clear yet.
It has been shown that IL-10 may function to increase host sur-
vival and also to help in the control of parasite load in some
models (Hunter et al. 1997; Roffe et al. 2012). However, the exact
source of IL-10 has not been studied in detail. In addition, high
levels of IL-10 were recently related to protection against car-
diomyopathy in human subjects, indicating that this cytokine
is of critical importance in the regulation of the immune re-
sponse during T. cruzi infection (Dutra et al. 2014). The role of
CD4 + CD25 + Foxp3+ Treg cells has also been evaluated and
early mouse studies where these cells were depleted by mon-
oclonal antibodies to CD25 indicated that their role in the reg-
ulation of immunity during the acute phase of the T. cruzi in-
fection is rather limited (Kotner and Tarleton 2007; Sales et al.
2008). On the contrary, recent findings in humans have shown
an increased percentage of Treg cells in chagasic subjects in the
indeterminate chronic phase (free of disease) when compared
to patients with heart damage, suggesting an important role
for Tregs in Chagas disease (de Araujo et al. 2011). Moreover, it
has been recently demonstrated, using a nondepleting mono-
clonal antibody to CD25, that regulatory CD4 + CD25 + Foxp3+
T cells may also help to control the adaptive immune response,
during the acute infection, in mice (Nihei et al. 2014). The im-
munomodulatory activity of the nondepleting monoclonal anti-
body to CD25 was similar to that which has been described for
humans (Huss et al. 2015) and encompassed a delayed increase
of Treg frequencies and an augmented production of IL-10 and
TNF-« by T cells. Interestingly, it was demonstrated that TNF-«
levels are significantly higher in Chagas’ disease patients with
severe ventricular arrhythmias and in patients with dilated car-
diomyopathy, suggesting that this cytokine could be detrimen-
tal to the heart (Ferreira et al. 2003). However, in one study, using
the mouse model, in vivo blockade of TNF-« during the chronic
phase of T. cruzi infection aggravated cardiomyopathy, suggest-
ing that TNF-« would have a protective role (Bilate et al. 2007). In
fact, it has been recently shown that TNF-« is cardioprotective
in both mice and humans (Papathanasiou et al. 2015). In addi-
tion and more importantly, there was a clear indication that the
functional activity of Treg cells might be of crucial importance
during the acute and chronic phases of the infection, decreas-
ing tissue destruction and pathology (Nihei et al. 2014; Bonney
et al. 2015). Therefore, the notion concerning the manipulation



of Treg cells either by antibodies or even interleukins such as IL-2
(Kosmaczewska 2014) might open up a new avenue for therapeu-
tic strategies in Chagas’ disease.

CONCLUDING REMARKS

The study of acute and chronic phases of infection with intra-
cellular pathogens, such as T. cruzi, allows the elucidation of the
mechanisms and conditions that may be targeted to reprogram
the host immune system, either by using tools that interfere
with components of the regulatory arm of the immune system
machinery (Nihei et al. 2014) or by improving therapeutic vac-
cine strategies (Pereira et al. 2015). This knowledge would cer-
tainly result in a better understanding of the necessary balance
to achieve or reestablish the health of the host during T. cruzi in-
fection, thus providing new strategies to treat Chagas’ disease,
besides the use of drugs that kills the parasite in vivo, sterilizing
the host—a difficult task to achieve because the available treat-
ments are not always efficient, having many toxic collateral ef-
fects, so that clinical researchers have not reached a consensus
about them after more than 30 years of their clinical use and
in addition, parasite resistance to these drugs is common and
well documented (Bestetti and Restini 2014; Molina, Salvador
and Sanchez-Montalva 2014; Molina et al. 2014; Rassi, Rassi and
Marin-Neto 2014; Zingales et al. 2015). Of note, the authors of a
randomized, double-blind, placebo-controlled trial in which try-
panocidal therapy with benznidazole was evaluated in patients
with established Chagas’ cardiomyopathy concluded that this
type of treatment significantly reduced serum parasite detec-
tion but did not significantly reduce cardiac clinical deteriora-
tion through 5 years of follow-up (Morillo et al. 2015).
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