

NIH Public Access Author Manuscript

Circ J. Author manuscript; available in PMC 2012 December 20.

Published in final edited form as: *Circ J.* 2012 ; 76(6): 1476–1485.

Identification of <code>εPKC</code> targets during cardiac ischemic injury

Grant Budas², Helio Miranda Costa Junior³, Julio Cesar Batista Ferreira², André Teixeira da Silva Ferreira⁴, Jonas Perales⁴, José Eduardo Krieger³, Daria Mochly-Rosen², and Deborah Schechtman^{1,*}

¹Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, Brazil

²Department of Chemical and Systems Biology, Stanford University School of Medicine, São Paulo, Brazil

³Instituto do Coração, São Paulo, Brazil

⁴Instituto Oswaldo Cruz, Rio de Janeiro, Brazil

Abstract

Background—Activation of e protein kinase C (ePKC) protects hearts from ischemic injury. However, some of the mechanism(s) of ePKC mediated cardioprotection are still unclear. Identification of ePKC targets may aid to elucidate ePKC–mediated cardioprotective mechanisms. Previous studies, using a combination of ePKC transgenic mice and difference in gel electrophoresis (DIGE), identified a number of proteins involved in glucose metabolism, whose expression was modified by ePKC. These studies, were accompanied by metabolomic analysis, and suggested that increased glucose oxidation may be responsible for the cardioprotective effect of ePKC. However, whether these ePKC-mediated alterations were due to differences in protein expression or phosphorylation was not determined.

Methods and Results—Here, we used an ePKC-specific activator peptide, ψ eRACK, in combination with phosphoproteomics to identify ePKC targets, and identified proteins whose phosphorylation was altered by selective activation of ePKC most of the identified proteins were mitochondrial proteins and analysis of the mitochondrial phosphoproteome, led to the identification of 55 spots, corresponding to 37 individual proteins, which were exclusively phosphorylated, in the presence of ψ eRACK. The majority of the proteins identified were proteins involved in glucose and lipid metabolism, components of the respiratory chain as well as mitochondrial heat shock proteins.

Conclusion—In summary the protective effect of ePKC during ischemia involves phosphorylation of several mitochondrial proteins involved in glucose, lipid metabolism and oxidative phosphorylation. Regulation of these metabolic pathways by ePKC phosphorylation may lead to ePKC-mediated cardioprotection induced by ψ eRACK.

Keywords

ePKC; ischemia; phosphorylation; mitochondria

^{*}Corresponding author: deborah@iq.usp.br.

Competing interests: D.M.R. is the founder of KAI Pharmaceuticals Inc, a company that aims to bring PKC regulators to the clinic. None of the research performed in her laboratory is in collaboration with or supported by the company. The other authors declare that they have no competing interests.

Authors' contributions: G.B., H.M.C.J., A.T.D.F., J.P. and J.C.B.F. performed all experiments. D.S. and D.M-R designed the study. D.S. directed the study. D.S. and J.E.K. wrote the manuscript.

Introduction

We previously developed and used an ePKC isoenzyme- selective activator peptide and found that ePKC activation reduces cardiac cell death induced by ischemia ^{1, 2}. To provide insight into ePKC-mediated cytoprotective mechanisms, we used a proteomic approach combining antibodies that specifically recognize proteins phosphorylated at the PKC consensus phosphorylation site and an ePKC activator peptide ³. This approach led to the identification of mitochondrial aldehyde dehydrogenase 2 (ALDH2) as an ePKC substrate, whose phosphorylation and activation is necessary and sufficient to induce cardioprotection during an ischemic injury³. We also demonstrated that the cytoprotective mechanism of ePKC is mediated, at least in part, by ALDH2-mediated detoxification of reactive aldehydes, such as 4-hydroxy-2-nonenal (4-HNE), that accumulate in the heart during ischemia ³⁻⁵. Studies by others, using transgenic and dominant negative ePKC mice, identified other ePKC signaling complexes, composed of proteins involved in glucose and lipid metabolism, and proteins related to transcription/ translation, suggesting that ePKCmediated cytoprotection involves regulation of other cellular processes ⁶⁻⁸. A study using difference in gel eletrophoresis (DIGE) comparing hearts of mice overexpressing catalytically active and dominant negative ePKC identified alterations in the levels of proteins involved in glucose metabolism. Metabolomic studies confirmed that during ischemia/ reperfusion glucose is metabolized faster in animals expressing constitutively active ePKC⁹. However, these studies did not clarify whether the differences in the identified proteins were due to differential expression or phosphorylation levels. Overexpression of ePKC lead to its mislocalization ¹⁰ and a compensatory effect observed by δPKC overexpression ⁹. Therefore, some of the targets identified in this study could possibly have been phosphorylated by overexpressed &PKC or mis-localized ePKC. Nevertheless, these studies suggested that the cardioprotective mechanism of ePKC is also due to the regulation of glucose and lipid metabolism.

In the present study we used an adult heart Langendorff coronary perfusion system, and treated isolated hearts with an ePKC specific activator peptide (ψ eRACK) prior to ischemia, to determine phosphorylation events, following selective activation of ePKC. Proteins whose phosphorylation increased in the presence of ψ eRACK were detected in 2D Gels with a phospho-specific dye. Mass spectrometry of the phosphorylated proteins demonstrated that most of the proteins identified in total heart lysates that were differentially phosphorylated upon ePKC activation were mitochondrial proteins. Isolation of mitochondria from ψ eRACK treated and control hearts confirmed that ePKC activation led to an increase inphosphorylation levels of proteins involved in, the electron transport chain as well as lipid metabolism.

Materials and Methods

Ex vivo rat heart model of cardiac ischemia

Animal protocols were approved by the Stanford University Institutional Animal Care and Use Committee. Rat hearts (Wistar, 250-300g), each group consisting of three rats, were perfused *via* the aorta at a constant flow rate of 10 ml/min with oxygenated Krebs-Henseleit buffer (120 mM NaCl, 5.8 mM KCl, 25 mM NaHCO3, 1.2 mM NaHCO3, 1.2 mM MgSO4, 1.2 mM CaCl2, and 10 mM dextrose, pH 7.4) at 37°C. After a 20 min. equilibration period, hearts were subjected to 35 min global, no-flow ischemia. The ePKC-selective agonist ψ eRACK peptide [HDAPIGYD ¹¹ fused to the cell permeable Tat protein transduction domain peptide, amino acids 47-57 ¹² (1mM) was perfused for 10 min immediately prior to ischemia onset.

Preparation of heart lysates and sub-cellular fractionation

At the end of ischemia, hearts were removed from the cannnula and immediately homogenized on ice to obtain total and mitochondrial fractions. To obtain the total lysate fraction, heart ventricles were homogenized in BufferA [7M urea, 2M tiourea, 4% CHAPS, 5mM magnesium acetate, 17μ g/mL PMSF and phosphatase inhibitor cocktail diluted 1:300 (Sigma # P8340 and Sigma # P5726)]. To obtain the mitochondrial fraction, heart ventricles were homogenized in ice-cold mannitol-sucrose (MS) buffer [210 mM mannitol, 70 mM sucrose, 5 mM MOPS and 1mM EDTA containing Protease) and phosphatase Inhibitors as above]. The homogenate was centrifuged at 700g for 10 minutes (to pellet the cytoskeletal fraction), the resultant supernatant was filtered through gauze, and centrifuged at 10,000g for 10 minutes (to pellet the mitochondrial fraction). The mitochondrial pellet was washed 3x in MS buffer before the pellet was resuspended in DIGE buffer.

Two-Dimensional Gel Electrophoresis

Protein samples (300µg for analytic gels and 500 µg for preparative gels of total heart lysate and 250 µg for analytic/ preparative gels of mitochondrial fraction) were applied onto 3-10 linear immobilized pH gradient strips (13cm, GE, Healthcare, Life Science). Strips were rehydrated for 16 hours at room temperature. Isoelectric focusing (IEF) was performed on an IPGphor III apparatus (GE Healthcare Life Science) at 17 KVh. For the second dimension strips were incubated at room temperature, for 20 min in equilibration buffer [6 M urea, 2% (w/v) SDS, 50 mM Tris-HCl pH 6.8, 30% (v/v) glycerol, 0.001% (w/v) bromophenol blue] with 2% (w/v) DTT, followed by incubation with 4% (w/v) iodoacetamide in equilibrium buffer, for 20 min. The second dimension was separated using vertical SDS-PAGE. Experiments were performed in triplicates. Phospho-proteins were detected by staining with Pro-Q Diamond (Invitrogen) per manufacturer's instructions. Gels were scanned using a Typhoon TRI scanner (Healthcare Life Science), stained with Coomassie Brilliant Blue G250 (CBB) ¹³ and scanned using a UTA-1100 scanner and Labscan v 5.0 software (GE Healthcare Life Science).

Image analysis was performed using Image Master Software v.5.01 (GE Healthcare Life Science). For each pair of samples analyzed, individual spot volumes of replicate gels were determined in Pro-Q Diamond stained gels (phospho-proteins), followed by normalization (individual spot volume/ volume of all spots \times 100). Spots (of treated samples) that appeared or showed a change in spot volume of least 1.5 fold as compared to samples of hearts submitted to ischemia alone were excised from CBB-stained preparative gels and identified by mass spectrometry. Differences between experimental groups were evaluated by the Mann-Whitney t-test for proteomic analysis. A * p value < 0.05 was considered statistically significant.

"In-gel" protein digestion and MALDI-TOF/TOF MS

Digestion of selected spots was performed as previously described ¹⁴. Matrix-Assisted Laser Desorption ionization Time-of-Flight/Time-of-Flight Mass Spectrometry) as analysis executed aspreviously described ¹⁵. MASCOT MS/MS Ion Search (www.matrixscience.com) software was used to blast sequences against the SwissProt and NCBInr databanks. Combined MS-MS/MS searches were conducted with parent ion mass tolerance at 50 ppm, MS/MS mass tolerance of 0.2 Da, carbamidomethylation of cysteine (fixed modification) and methionine oxidation (variable modification). According to MASCOT probability analysis only hits with significant P < 0.05 were accepted Spots from total lysates were identified at the Mass Spectrometry Facility at Stanford University (mass-spec.stanford.edu).

Results

Identification of phosphoproteins

Hearts were exposed to global, no-flow ischemia (35 min) in the presence or absence of ψ eRACK (1µM) applied for normoxia 10 min prior to an ischemic onset, with no wash-out, as previously described ¹⁶. Both groups had a 20 min equilibration period, after which hearts were subjected to 30 min global, no-flow ischemia. To one of the groups the ePKC-selective agonist peptide, ψ eRACK, was perfused for 10 min (1µM), immediately prior to ischemia onset and kept throughout ischemia. Total lysate of 3 hearts, from 3 independent experiments, were prepared, and run individually on 2D gels. Considering phosphorylated spots that had at least a 1.5X increase, we compared phosphorylated spots from hearts of animals subjected to, ischemia and ψ eRACK + ischemia. The phosphorylation of 20 spots increased only in ischemic hearts treated with ψ eRACK. Of these, 18 spots were identified by mass spectrometry (Figure 1, 2 and Table 1).

Since the majority of the proteins (~70%) identified were mitochondrial proteins and since a number of previous studies demonstrated that ePKC can interact with and phosphorylate mitochondrial proteins ^{8, 17-20} we set out to analyze the ePKC phosphoproteome in isolated mitochondria.

Identification of phosphoproteins in mitochondrial fractions

Mitochondria from, ischemia and $\psi \in RACK+$ ischemia treated hearts were isolated as described in materials and methods. In a previous study we verified the purity of our mitochondrial preparation by electron microscopy and Western blot analysis of specific mitochondrial proteins ²⁰. Mitochondrial proteins were separated by 2-D gel electrophoresis and phosphoproteins stained with Pro-Q Diamond. Of the 183 spots that appeared or were increased in gels of mitochondria from hearts of animals treated with weRACK + ischemia, 62 spots were visible by Coomassie Brilliant Blue and 56 spots corresponding to 38 different proteins were identified by in-gel excision followed by mass spectrometry (Figures 3, 4 and Table 2). Twenty seven proteins were mitochondrial proteins. Nine proteins were mitochondrial inner membrane proteins and one outer membrane protein. Proteins involved in fatty acid oxidation, electron transport chain (complexes I-IV), heat shock proteins as well as structural proteins were also identified. Interestingly, protein disulfide-isomerase A3 precursor, oxoglutarate (alpha-ketoglutarate) dehydrogenase (lipoamide), tubulin alpha 1A, mitochondrial aconitase, creatine kinase, mitochondrial 2, acyl-Coenzyme A dehydrogenase very long chain, 3-oxoacid CoA transferase 1, carnitine palmitoyltransferase II, electron transfer flavoprotein-ubiquinone oxidoreductase, succinate dehydrogenase complex, subunit A, flavoprotein (Fp), glyceraldehyde 3-phosphate-dehydrogenase, desmin, ubiquinolcytochrome c reductase core protein I and Coq9 protein had a change in more than one phospho-spot indicative of multiple phosphorylation sites.

Recently we showed that translocation of ϵ PKC to the mitochondria is mediated by HSP90, therefore the identified substrates can be direct targets of ϵ PKC ²⁰. Using scansite (http:// scansite.mit.edu/) we predicted PKC phosphorylation sites of the mitochondrial proteins whose phosphorylation increased upon treatment with $\psi\epsilon$ RACK. All identified mitochondrial proteins had putative PKC phosphorylation some which matched phosphorylation sites deposited in http://www.phosphosite.org/ (Table 4).

Discussion

Several lines of evidence suggest that selective ePKC activation reduces cardiac damage due to ischemic injury. Activation of ePKC reduces infarct size and improves functional recovery of the heart ¹⁻³whereas ePKC inhibition or knockout negates the infarct-sparing

effect of ischemic preconditioning ^{1, 3, 9, 21, 22}. A number of mechanisms have been proposed for ePKC mediated cardioprotection, including regulation of sarcolemmal and/or mitoK_{ATP} channels ^{17, 23}, regulation of gap-junction permeance through phosphorylation of connexin 43²⁴, modulation of proteasomal activity ¹⁶ or regulation of mitochondrial permeability transition pore (MPTP) opening through direct phosphorylation of MPTP components⁸. We recently identified mitochondrial ALDH2 as a direct ePKC substrate whose phosphorylation and activation is essential for ePKC-mediated cardioprotection³. The cytoprotective mechanism of ALDH2 activation by ePKC is due to the increased metabolism of reactive aldehydes, such as 4-Hydroxy-2-nonenal (4-HNE), which are produced as a by-product of ROS-induced lipid peroxidation, and accumulate, in the ischemic/ reperfused heart ²⁵. In the present study, we used the Pro-Q Diamond phosphospecific staining method to label proteins whose phosphorylation increased by weRACK during ischemia. The majority (~70%) of the ePKC phosphoproteins identified in total heart homogenates treated with ψ eRACK during ischemia were mitochondrial proteins. The observation that ePKC activation and cytoprotection results in phosphorylation of mitochondrial proteins and is consistent with other studies reporting that ePKC-mediated cardioprotection is mediated by phosphorylation of mitochondrial proteins ^{1, 3, 9, 17, 18, 22}.

To provide a more extensive analysis of the ePKC mitochondrial phosphoproteome, we repeated the Pro-Q Diamond analysis on the cardiac mitochondrial-enriched subfraction. In the presence of ψ eRACK we saw the appearance of 182 phosphorylated spots, suggesting that ePKC activation results in phosphorylation of a number of mitochondrial proteins. We identified novel mitochondrial ePKC phosphoproteins involved in lipid oxidation, glycolysis, electron transport chain (including proteins from complexes I-IV), ketone body metabolism, and heat shock proteins.

We found an increase in the phosphorylation of inner-mitochondrial protein components of the respiratory chain, (complexes I, II and III); NADH dehydrogenase (ubiquinone) Fe-S protein, electron transfer flavoprotein-ubiquinone oxidoreductase, succinate dehydrogenase complex, subunit A, flavoprotein (Fp) and ubiquinol-cytochrome c reductase core protein I. Our results are in agreement with a number of biochemical and functional analyses which found ePKC to interact with, and phosphorylate inner-mitochondrial proteins involved in mitochondrial respiration ^{7-9, 26}. Further, the presence of ePKC in a highly purified inner mitochondrial membrane preparation has already been previously demonstrated ²³. An increase in the activity of the electron transport chain and activation of cytochrome c oxidase subunit IV (COX) by direct ePKC phosphorylation has also been previously demonstrated ²⁷. COX activation was suggested to be one of the cardioprotective mechanisms of ePKC, possibly due to increased electron flux through the electron transport chain, resulting in enhanced ATP generation and reduced ROS generation ^{22, 27, 28}. An ePKC-mediated increase in cytochrome c oxidase activity was also shown to protect lens from ischemic damage ²⁹. Selective activation of ePKC with weRACK increased the phosphorylation and activity of complexes I, III and IV in synaptic mitochondria, indicating that other components of the electron transport chain are also regulated by ePKC phosphorylation ³⁰, and ePKC activation led to a decrease in mitochondrial ROS generation of neuronal mitochondria³⁰. In agreement with a role for ePKC in mitochondrial respiration, hearts of constitutively active ePKC transgenic mice demonstrate preserved coupling of oxidative phosphorylation, maintained mitochondrial membrane potential and decreased cytochrome c release induced by ischemic reperfusion ³¹. The ePKC transgenic mice used have a mutation of Ala¹⁵⁹ to Glu in the ePKC resulting in constitutively active ePKC and increased resistance to cardiac ischemic reperfusion⁸. Interestingly, in constitutively active ePKC transgenic mice, mitochondrial PKC expression is preferentially increased over cytosolic expression, suggesting that the active form of PKC results in its mitochondrial translocation⁸. Taken together, these data suggest that phosphorylation of

intra-mitochondrial targets is crucial for ePKC-mediated cytoprotection. In the present study we identify other components of the respiratory chain and inner mitochondrial phosphorylated proteins. However, whether there is a direct physical association between ePKC and each of the inner mitochondrial ePKC phosphoproteins identified here, and whether these are direct or indirect ePKC substrates remains to be determined. Nevertheless future studies can, be directed by the results obtained here.

We did not detect ALDH2, however this may be due to the fact that different methods of detecting protein phosphorylation have different sensitivities. Some of the ePKC targets identified can be indirect targets whose phosphorylation may be activated upon ALDH2 activation.

Using difference in gel eletrophoresis (DIGE) of cardiac mitochondria from transgenic mice expressing constitutively active or dominant negative ePKC it was found that the majority of spots unique to constitutively active ePKC corresponded to proteins involved in glucose metabolism ⁹. These studies were combined with metabolomic studies which detected an increase in glucose metabolites in hearts expressing constitutively active ePKC subjected to ischemia/ reperfusion ⁹. The authors proposed that activating glycolytic pathways during ischemia is a novel mechanism for the cardioprotective role of ePKC. In the present study we used a phospho-specific dye and weRACK to investigate direct protein phosphorylation events mediated by ePKC. Despite the different methods and methodology used to activate εPKC, (constitutively active transgenic vs. dynamic activation) we identified many of the same proteins, previously described in the DIGE study, including; isocitrate dehydrogenase, oxoglutarate (alpha-ketoglutarate) dehydrogenase, pyruvate dehydrogenase, succinate dehydrogenase. [6, 7, 9 and Table 4]. We also identified additional ePKC substrates involved in glycolysis, and Krebs cycle such as: aldolase A, ATP-specific succinyl-CoA synthase beta subunit, dihydrolipoamide dehydrogenase (E3), mitochondrial aconitase and aconitase 2, confirming that ePKC activation leads to phosphorylation of proteins involved in glycolysis and the Krebs cycle. Our identification of aconitase as an ePKC target suggests that regulation of the TCA cycle is mediated by ePKC. Aconitase has been previously identified as a PKCBII substrate in diabetic rats, however, aconitase phosphorylation by PKCBII impaired TCA cycle since there was an increase in reverse activity of aconitase (isocitrate to aconitase) ³². While we identified some proteins identified previously, others were not detected in the present study, such as proteins involved in the Malate/Aspartate shuttle. This could be explained by the different methodology or the sensitivity of the methods (DIGE vs ProQ Diamond) and that we only identified the more abundant phosphorylated proteins. Alternatively, some of the proteins previously detected could have their expression and not phosphorylation status altered ⁹. In a study identifying ePKC complexes it has been suggested that ePKC may also play a role in regulating transcription and translation processes ⁶. Accordingly, the phosphorylation of Coq9, a key regulator of coenzyme Q synthesis ³³, was also regulated by ePKC in the present study. Further studies should be performed to determine the specific regulation of glycolytic pathways by ePKC phosphorylation and whether different isoenzymes can phosphorylate different sites.

εPKC could also have a direct or indirect role in mitochondrial protein assembly, folding, and import since we identified three mitochondrial heat shock proteins that play a role in the import and folding of proteins inside the mitochondria, and sorting and assembly machinery component 50 (SAM50), homolog of a protein involved in the assembly of outer mitochondrial membrane proteins ³⁴.

Cardioprotective signals from G protein coupled receptors (GPCRs), activated for example by bradykinin, propagating from the plasma membrane to the mitochondria through signalosomes, vesicular multimolecular complexes derived from caveoli have been

previously proposed ³⁵. In fact ePKC was found in signalosomes and inhibition of ePKC by eV1-2 blocks signalosome stimulation of mitoK_{ATP} ³⁵. We found two proteins that are found in caveoli, Annexin A2 and PTRF also known as Cavin ³⁶, these proteins could be part of the signalosome probably co-purified with our mitochondrial fraction. PTRF phosphorylation has been shown to be important in caveoli formation ³⁶.

Conclusions

A number of mechanisms have been proposed for ePKC-mediated cardioprotection by preconditioning. In the present study we identified several ePKC phosphoproteins which may be responsible for the cardioprotective effect of ePKC. The ePKC targets identified are in line with many of the previously proposed mechanisms for ePKC mediated cardioprotection. We identified components of the signalosome contributing to the idea that ePKC-mediated cardioprotection involves transduction of GPCR signaling to the mitochondria³⁵. We also found components of lipid and carbohydrate oxidation pathways consistent with the idea that lipid and carbohydrate metabolism is modulated by ePKC⁹. Activation of the respiratory chain and increase in oxygen consumption have also been proposed to be protective mechanisms of ePKC during preconditioning, to this end we identified components of Krebs cycle, and respiratory chain, whose phosphorylation was modulated by ePKC ^{27, 29, 30}. The exact mechanisms by which ePKC phosphorylation leads to these different cardioprotective pathways still needs to be elucidated. The data obtained in the present study can therefore direct further studies to characterize the specific role of individual mitochondrial protein phosphorylation in ePKC-mediated cardioprotection. Taken together, our data suggest that ePKC-mediated phosphorylation events in the mitochondria are important for the maintenance of metabolic activity and cardioprotection during ischemic injury.

Acknowledgments

This work was supported by NIH grants AA11147 and HL52141 to D.M.-R. and in part, by an American Heart Association Western States postdoctoral fellowship to G.B.; A Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP)– Brasil grant 2005/54188-4 to D.S.; H.M.C.J. and J.C.B.F. both held a post-doctoral fellowships FAPESP 2006/52062-6 and FAPESP 2009/03143-1 respectfully.

References

- Chen CH, Gray MO, Mochly-Rosen D. Cardioprotection from ischemia by a brief exposure to physiological levels of ethanol: Role of epsilon protein kinase c. Proc Natl Acad Sci U S A. 1999; 96:12784–12789. [PubMed: 10536000]
- Dorn GW 2nd, Souroujon MC, Liron T, Chen CH, Gray MO, Zhou HZ, Csukai M, Wu G, Lorenz JN, Mochly-Rosen D. Sustained in vivo cardiac protection by a rationally designed peptide that causes epsilon protein kinase c translocation. Proc Natl Acad Sci U S A. 1999; 96:12798–12803. [PubMed: 10536002]
- Chen CH, Budas GR, Churchill EN, Disatnik MH, Hurley TD, Mochly-Rosen D. Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart. Science. 2008; 321:1493–1495. [PubMed: 18787169]
- Budas GR, Disatnik MH, Chen CH, Mochly-Rosen D. Activation of aldehyde dehydrogenase 2 (aldh2) confers cardioprotection in protein kinase c epsilon (pkcepsilon) knockout mice. J Mol Cell Cardiol. 2010; 48:757–764. [PubMed: 19913552]
- Budas GR, H DM, D M-R. Aldehyde dehydrogenase 2 in cardiac protection: A new therapeutic target? Trends Cardiovasc Med. 2009; 19:158–164. [PubMed: 20005475]
- 6. Edmondson RD, Vondriska TM, Biederman KJ, Zhang J, Jones RC, Zheng Y, Allen DL, Xiu JX, Cardwell EM, Pisano MR, Ping P. Protein kinase c epsilon signaling complexes include

metabolism- and transcription/translation-related proteins: Complimentary separation techniques with lc/ms/ms. Mol Cell Proteomics. 2002; 1:421–433. [PubMed: 12169683]

- Ping P, Zhang J, Pierce WM Jr. Bolli R. Functional proteomic analysis of protein kinase c epsilon signaling complexes in the normal heart and during cardioprotection. Circ Res. 2001; 88:59–62. [PubMed: 11139474]
- Baines CP, Song CX, Zheng YT, Wang GW, Zhang J, Wang OL, Guo Y, Bolli R, Cardwell EM, P P. Protein kinase cepsilon interacts with and inhibits the permeability transition pore in cardiac mitochondria. Circ Res. 2003; 92:873–880. [PubMed: 12663490]
- 9. Mayr M, Liem D, Zhang J, Li X, Avliyakulov NK, Yang JI, Young G, Vondriska TM, Ladroue C, Madhu B, Griffiths JR, Gomes A, Xu Q, Ping P. Proteomic and metabolomic analysis of cardioprotection: Interplay between protein kinase c epsilon and delta in regulating glucose metabolism of murine hearts. J Mol Cell Cardiol. 2009; 46:268–277. [PubMed: 19027023]
- Pass JM, Gao J, Jones WK, Wead WB, Wu X, Zhang J, Baines CP, Bolli R, Zheng YT, Joshua IG, Ping P. Enhanced pkc beta ii translocation and pkc beta ii-rack1 interactions in pkc epsiloninduced heart failure: A role for rack1. Am J Physiol Heart Circ Physiol. 2001; 281:H2500–2510. [PubMed: 11709417]
- Chen L, Hahn H, Wu G, Chen CH, Liron T, Schechtman D, Cavallaro G, Banci L, Guo Y, Bolli R, Dorn GWn, D M-R. Opposing cardioprotective actions and parallel hypertrophic effects of delta pkc and epsilon pkc. Proc Natl Acad Sci U S A. 2001; 98:11114–11119. [PubMed: 11553773]
- Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF. In vivo protein transduction: Delivery of a biologically active protein into the mouse. Science. 1999; 285:1569–1572. [PubMed: 10477521]
- Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P, Zardi L, Righetti PG. Blue silver: A very sensitive colloidal coomassie g-250 staining for proteome analysis. Electrophoresis. 2004; 25:1327–1333. [PubMed: 15174055]
- 14. Costa-Junior HM, Garavello NM, Duarte ML, Berti DA, Glaser T, de Andrade A, Labate CA, Ferreira AT, Perales JE, Xavier-Neto J, Krieger JE, Schechtman D. Phosphoproteomics profiling suggests a role for nuclear betaiotapkc in transcription processes of undifferentiated murine embryonic stem cells. J Proteome Res. 9:6191–6206. [PubMed: 20936827]
- Andrade HM, Murta SM, Chapeaurouge A, Perales J, Nirde P, Romanha AJ. Proteomic analysis of trypanosoma cruzi resistance to benznidazole. J Proteome Res. 2008; 7:2357–2367. [PubMed: 18435557]
- Churchill EN, Ferreira JC, Brum PC, Szweda LI, D M-R. Ischaemic preconditioning improves proteasomal activity and increases the degradation of deltapkc during reperfusion. Cardiovasc Res. 2010; 85:385–394. [PubMed: 19820255]
- Ohnuma Y, Miura T, Miki T, Tanno M, Kuno A, Tsuchida A, Shimamoto K. Opening of mitochondrial k(atp) channel occurs downstream of pkc-epsilon activation in the mechanism of preconditioning. Am J Physiol Heart Circ Physiol. 2002; 283:440–447.
- Lawrence KM, Kabir AM, Bellahcene M, Davidson S, Cao XB, McCormick J, Mesquita RA, Carroll CJ, Chanalaris A, Townsend PA, Hubank M, Stephanou A, Knight RA, Marber MS, Latchman DS. Cardioprotection mediated by urocortin is dependent on pkcepsilon activation. FASEB J. 2005; 19:831–833. [PubMed: 15764590]
- Churchill EN, Disatnik MH, D M-R. Time-dependent and ethanol-induced cardiac protection from ischemia mediated by mitochondrial translocation of varepsilonpkc and activation of aldehyde dehydrogenase 2. J Mol Cell Cardiol. 2009; 46:278–284. [PubMed: 18983847]
- Budas GR, Churchill EN, Disatnik MH, Sun L, D M-R. Mitochondrial import of pkcepsilon is mediated by hsp90: A role in cardioprotection from ischaemia and reperfusion injury. Cardiovasc Res. 2010; 88:83–92. [PubMed: 20558438]
- Gray MO, Karliner JS, D M-R. A selective epsilon-protein kinase c antagonist inhibits protection of cardiac myocytes from hypoxia-induced cell death. J Biol Chem. 1997; 272:30945–30951. [PubMed: 9388241]
- Ogbi M, Johnson JA. Protein kinase cepsilon interacts with cytochrome c oxidase subunit iv and enhances cytochrome c oxidase activity in neonatal cardiac myocyte preconditioning. Biochem J. 2006; 393:191–199. [PubMed: 16336199]

- Jab rek M, Costa AD, Burton JR, Costa CL, Garlid KD. Mitochondrial pkc epsilon and mitochondrial atp-sensitive k+ channel copurify and coreconstitute to form a functioning signaling module in proteoliposomes. Circ Res. 2006; 99:878–883. [PubMed: 16960097]
- Bowling N, Huang X, Sandusky GE, Fouts RL, Mintze K, Esterman M, Allen PD, Maddi R, McCall E, Vlahos CJ. Protein kinase c-alpha and -epsilon modulate connexin-43 phosphorylation in human heart. J Mol Cell Cardiol. 2001; 33:789–798. [PubMed: 11273731]
- Eaton P, Li JM, Hearse DJ, Shattock MJ. Formation of 4-hydroxy-2-nonenal-modified proteins in ischemic rat heart. Am J Physiol. 1999; 276:H935–943. [PubMed: 10070077]
- 26. Agnetti G, Kane LA, Guarnieri C, Caldarera CM, JE VE. Proteomic technologies in the study of kinases: Novel tools for the investigation of pkc in the heart. Pharmacol Res. 2007:55.
- 27. Guo D, Nguyen T, Ogbi M, Tawfik H, Ma G, Yu Q, Caldwell RW, Johnson JA. Protein kinase c-epsilon coimmunoprecipitates with cytochrome oxidase subunit iv and is associated with improved cytochrome-c oxidase activity and cardioprotection. Am J Physiol Heart Circ Physiol. 2007; 293:H2219–2230. [PubMed: 17660387]
- Yu Q, Nguyen T, Ogbi M, Caldwell RW, Johnson JA. Differential loss of cytochrome-c oxidase subunits in ischemia-reperfusion injury: Exacerbation of coi subunit loss by pkc-epsilon inhibition. Am J Physiol Heart Circ Physiol. 2008; 294:H2637–2645. [PubMed: 18408135]
- Barnett M, Lin D, Akoyev V, Willard L, Takemoto D. Protein kinase c epsilon activates lens mitochondrial cytochrome c oxidase subunit iv during hypoxia. Exp Eye Res. 2008; 86:226–234. [PubMed: 18070622]
- Dave KR, DeFazio RA, Raval AP, Torraco A, Saul I, Barrientos A, Perez-Pinzon MA. Ischemic preconditioning targets the respiration of synaptic mitochondria via protein kinase c epsilon. J Neurosci. 2008; 28:4172–4182. [PubMed: 18417696]
- McCarthy J, McLeod CJ, Minners J, Essop MF, Ping P, Sack MN. Pkcepsilon activation augments cardiac mitochondrial respiratory post-anoxic reserve--a putative mechanism in pkcepsilon cardioprotection. J Mol Cell Cardiol. 2005; 38:697–700. [PubMed: 15808847]
- Lin G, Brownsey RW, MacLeod KM. Regulation of mitochondrial aconitase by phosphorylation in diabetic rat heart. Cell Mol Life Sci. 2009; 66:919–932. [PubMed: 19153662]
- 33. Hsieh EJ, Gin P, Gulmezian M, Tran UC, Saiki R, Marbois BN, Clarke CF. Saccharomyces cerevisiae coq9 polypeptide is a subunit of the mitochondrial coenzyme q biosynthetic complex. Arch Biochem Biophys. 2007; 463:19–26. [PubMed: 17391640]
- 34. Kozjak V, Wiedemann N, Milenkovic D, Lohaus C, Meyer HE, Guiard B, Meisinger C, Pfanner N. An essential role of sam50 in the protein sorting and assembly machinery of the mitochondrial outer membrane. J Biol Chem. 2003; 278:48520–48523. [PubMed: 14570913]
- Garlid KD, Costa AD, Quinlan CL, Pierre SV, Dos Santos P. Cardioprotective signaling to mitochondria. J Mol Cell Cardiol. 2009; 46:858–866. [PubMed: 19118560]
- 36. Aboulaich N, Vainonen JP, Stralfors P, Vener AV. Vectorial proteomics reveal targeting, phosphorylation and specific fragmentation of polymerase i and transcript release factor (ptrf) at the surface of caveolae in human adipocytes. Biochem J. 2004; 383:237–248. [PubMed: 15242332]

Figure 1.

Detection of direct and indirect ePKC substrates in total rat heart lysates. Representative 2DE gels (n= 3 hearts of individual animals) of lysates from control hearts (A and D), hearts subjected to, ischemia alone (B and E) and Ischemia + ψ eRACK (C and F) as indicated. Coommassie blue G250 stained gels (A-C) and gels stained with phospho-specific dye Pro-Q Diamond (D-F). Spots used to align gels are labeled (A and D).

Budas et al.

Figure 2.

Coomassie blue G250 stained gel of total heart lysate treated with $\psi eRACK+$ ischemia indicating the spots identified by mass spectrometry whose phosphorylation significantly increased in hearts from rats treated with $\psi eRACK+$ ischemia as compared to hearts subjected to ischemia alone. For the annotation of the proteins identified see Table 1.

Figure 3.

Detection of direct and indirect ePKC substrates in isolated rat heart mitochondria. Representative 2DE gels (n=3 of mitochondria isolated from individual animals) of lysates from control hearts (A and D) and hearts subjected to, Ischemia (B and E) and $\psi eRACK$ + ischemia (C and F) as indicated. Coommassie blue G250 stained gels (A-C) and gels stained with phospho-specific dye Pro-Q Diamond (D-F). Spots used to align gels are labeled (A and D).

			· ·
hydroysteroid dehydrogenase like 2 🔸	7		a)
Succinate dehyd. Complex subunit aleba			
(Flavoprotein)	9008	Dvodutarate (aleba	keto dutarate) dehvdrogenæe
GRP75	11	· Oxogracarate (alpha	notogradatate) del yorogenade
DNAKtype chaperone HSP72-ps1) \ 40000 38 - Vinculin	(isoform CRAa)	01
NADH dehydrogenase (ubiquinope)	17		
Fe-S protein 1	Aconitase 2 1600 018		
Heat shock ptrotein 1B	1900	9 072 + Mitochondrial acc	noitaine
Heat shock protein 5 - 470	045 49 240	021	
70-Kda Heat Shock Cognate 43 43	1 000 3366039	► Carnitine palmit	oyitransferase II
10	4 6005 48 50 36 37 0	Acyl-CoA dehydri	ogenase very long chain
transcript release	1003 3 8	e lecu	contransfer flavoprotein-ubiquinone oxidoreductase acid CoA transferas 1
factor Tubulin alpha A2 56 57		- Contraction of the local division of the l	
Tubulin alpha A1 580		Solung and assembly i	machinery comp. 50 homology
Tubuin aipna A1	Vimentin 032	Dihydrolipoamidë dehydrogena 2 ⁵ o 26	
Ubiguinol-cytochrome	and the second second second	0	Creatine kinase mitocohondrial 2
reductase core protein	Desmin pyruvate	acetyl-CoA deh	ydrogenase, medium chain
Striated-muscle alpheno 140	0 047 E1	9 23 053	Annexin A2
	13	52 23 000	Glyperaldehydel 3-phosphate-dehydrogenase
	13	ATP synthese	alpha subunit precursor
	0		ency-CoA isomerase, mitochondrial;
Coq9 protein 4 60° 6	51	· Dena(0,0) Dena(2,1) d	
	Isocitrate Dehyd. 3	3 (NAD+) alpha	
		The second second	
	 Branched chain keto acid de 	enyar E1	
· · · · · · · · · · · · · · · · · · ·			

Figure 4.

Detection of direct and indirect ePKC substrates in isolated rat heart mitochondria. Representative 2DE gels (n=3 of mitochondria isolated from individual animals) of lysates from hearts subjected to, Ischemia and ψ eRACK+ ischemia as indicated in figure 1. Coommassie blue G250 stained gels upper panels and gels stained with phospho-specific dye Pro-Q Diamond, lower panel Swatermark-text

and experimental molecular weight (M.W.) and isoeletric point, % 24 volume of ischemia where ischemia = normoxia (average of three experiments) and p-values as determined by Whitney t-test where *P<0.05 are indicated. ischemia alone. Identified proteins indicated in figure 2 together with Uniprot accession number, number of peptides identified, Mascot score, theoretical Proteins identified by mass spectrometry whose phosphorylation increased in total heart lysates of hearts subjected to weRACK+ ischemia relative to

Budas et al.

		I	Ī	I		ſ		ſ	I		
Spot No.	Protein	Accessio n No.	Peptid e count	Mascot prot. score	Theorical	ical	Experimental	nental	% Vol	Location	P value
					MM	pI	MM	pI			
-	ATP synthase subunit beta, mitochondrial precursor	P10719	16	589	56kDa	5.19	42kDa	5.23	2.3	mitochondria	0.02^{*}
2	Myosin light polypeptide 3	P16409	12	495	22kDa	5.03	23kDa	4.94	2.6	cytosol	0.02^{*}
ŝ	Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial precursor	Q920L2	29	693	71kDa	6.75	65kDa	7.32	2.0	mitochondria	0.03*
4	Creatine kinase, sarcomeric mitochondrial precursor	P09605	15	309	47kDa	8.76	45kDa	7.99	2.2	mitochondria	0.04*
5	Short-chain specific acyl-CoA dehydrogenase, mitochondrial precursor	P15651	11	280	44kDa	8.47	31kDa	9.06	2.5	mitochondria	0,08
9	Very long-chain specific acyl-CoA dehydrogenase, mitochondrial precursor	P45953	23	300	70kDa	9.01	59kDa	8.00	1.8	mitochondria	0.01^{*}
7	Mitochondrial inner membrane protein	Q8CAQ8	17	225	83kDa	6.18	75kDa	6.35	5.1	mitochondria	0.02^{*}
×	Propionyl-CoA carboxylase alpha chain, mitochondrial precursor	P14882	12	78	77kDa	6.33	69kDa	6.41	5.1	mitochondria	0.02*
6	Dihydrolipoyl dehydrogenase, mitochondrial precursor	Q6P6R2	13	207	54kDa	7.96	48kDa	7.33	4.1	mitochondria	0.01^{*}
10	ATP synthase subunit alpha, mitochondrial precursor	P15999	20	694	59kDa	9.22	45kDa	9.14	3.0	mitochondria	0.04*
11	Creatine kinase M-type	P00564	14	568	43kDa	6.58	39kDa	6.87	4.0	mitochondria	0.01*
12	Pyruvate dehydrogenase E1 component subunit alpha, mitochondrial precursor	P26284	13	266	43kDa	8.49	44kDa	8.06	3.3	mitochondria	0.03*
13	Actin, alpha cardiac muscle 1	P68035	18	1030	41kDa	5.23	40kDa	5.14	6.5	cytosol	0.04*
14	Ezrin	P31977	12	93	69kDa	5.83	55kDa	5.80	3.5	cytosol	0.03*
15	Acetyl-coenzyme A synthetase 2-like, mitochondrial precursor	Q99NB1	10	91	74kDa	6.51	66kDa	6.40	5.8	mitochondria	0,09
16	Pyruvate kinase isozymes M1/M2	P11980	26	790	57kDa	6.63	46kDa	7.01	1.7	mitochondria	0.01^{*}
17	Phosphatidylethanolamine-binding protein 1	P31044	5	326	20kDa	5.48	19kDa	4.65	6.0	cytosol	0.01^{*}
18	Myosin regulatory light chain 2, ventricular/cardiac muscle isoform	P08733	15	409	18kDa	4.86	19kDa	4.35	2.7	cytosol	0.01*

Swatermark-text

Table 2

Proteins identified by mass spectrometry whose phosphorylation increased in mitochondria isolated from hearts subjected to weRACK+ ischemia relative to ischemia alone. Identified proteins indicated in Figure 6 are shown together with Uniprot accession number, number of peptides identified and, Mascot score, theoretical and experimental molecular weight (M.W.) and 26 isoeletric point. % volume of control (average of three experiments). * P<0.05, as determined by Whitney t-test.

Budas et al.

Spot No.	Protein	Accession No.	Peptide Count	Ion Score	Theorical	al	Experimental	ental	Coverage	Vol (% Ischemia)
					M.W.	pI	M.W.	pI	(%)	
1	acetyl-CoA dehydrogenase, medium chain	Gi: 8392833	6	214	46kDa	8.63	39kDa	7.53	13	appeared
2	sorting and assembly machinery component 50 homolog	gi:51948454	4	27	52kDa	6.34	59KDa	6.51	6	appeared
3	dihydrolipoamide dehydrogenase	gi:40786469	2	102	54kDa	7.96	61KDa	6.43	6	appeared
4	hydroxysteroid dehydrogenase like 2 [Rattus norvegicus]	gi 71043858	3	46	58KDa	5.85	85KDa	6.2	9	appeared
2	protein disulfide-isomerase A3 precursor	gi:1352384	8	116	57kDa	5.88	66KDa	5.92	11	appeared
9	protein disulfide-isomerase A3 precursor	gi 1352384	10	329	57KDa	5.88	66KDa	5.95	23	appeared
L	aconitase 2	gi 18079339	8	163	85KDa	8.05	105KDa	6.4	8	appeared
8	oxoglutarate (alpha-ketoglutarate) dehydrogenase (lipoamide)	gi 62945278	9	171	12KDa	6.3	174KDa	5.83	8	appeared
6	oxoglutarate (alpha-ketoglutarate) dehydrogenase (lipoamide)	gi 62945278	9	44	12KDa	6.3	174Kda	5.93	8	appeared
10	vimentin	gi 14389299	2	147	54KDa	5.06	67KDa	4.85	5	appeared
11	tubulin alpha 1A	gi:38328248	4	32	50kDa	4.94	64KDa	5.24	10	appeared
12	tubulin alpha 1A	gi:38328248	4	36	50kDa	4.94	64KDa	5.31	11	appeared
13	pyruvate dehydrogenase (lipoamide) beta	gi 56090293	5	247	39KDa	6.2	40KDa	5.47	20	appeared
14	branched chain keto acid dehydrogenase E1, beta polypeptide	gi 158749538	4	267	43KDa	6.41	42KDa	5.48	13	appeared
15	striated-muscle alpha tropomyosin	gi 207349	6	95	37KDa	4.71	38KDa	4.07	13	appeared
19	mitochondrial aconitase	gi 10637996	6	196	85KDa	7.87	105KDa	7.16	12	appeared
20	mitochondrial aconitase	gi 10637996	6	190	85KDa	7.87	105KDa	7.29	12	appeared
21	mitochondrial aconitase	gi 10637996	8	229	85KDa	7.87	104KDa	5.23	12	appeared
22	mitochondrial aconitase	gi 10637996	8	325	85KDa	7.87	104KDa	7.71	13	appeared
23	annexin A2	gi 9845234	8	442	39KDa	7.55	48KDa	7.1	30	appeared
24	aldolase A	gi 202837	4	125	40KDa	8.3	39KDa	8.04	22	appeared
25	creatine kinase, mitochondrial 2	gi 38259206	9	326	47kDa	8.64	46KDa	7.57	21	appeared

Spot No.	Protein	Accession No.	Peptide Count	Ion Score	Theorical	cal	Experimental	ental	Coverage	Vol (% Ischemia)
					M.W.	pI	M.W.	pI	(%)	
26	creatine kinase, mitochondrial 2	gi 38259206	6	442	47kDa	8.64	45KDa	8.65	26	appeared
27	acyl-Coenzyme A dehydrogenase, very long chain	gi 6978435	L	125	71KDa	9.01	71KDa	7.62	18	appeared
28	acyl-Coenzyme A dehydrogenase, very long chain	gi 6978435	5	181	71KDa	9.01	71KDa	7.42	13	appeared
29	3-oxoacid CoA transferase 1	gi 189181716	8	463	57kDa	8.7	61KDa	7.52	23	appeared
30	3-oxoacid CoA transferase 1	gi 189181716	4	238	57kDa	8.7	61KDa	7.35	13	appeared
31	ATP synthase alpha subunit precursor	gi 203055	8	327	59KDa	9.22	59KDa	8.25	20	appeared
32	pyruvate dehydrogenase E1 alpha form 1 subunit	gi 57657	2	211	43KDa	8.32	66KDa	6.48	7	appeared
33	carnitine palmitoyltransferase II	gi 1850592	8	257	74KDa	7.02	74KDa	7.1	7	appeared
34	carnitine palmitoyltransferase II	gi 1850592	L	125	74KDa	7.02	74KDa	7.12	15	appeared
35	carnitine palmitoyltransferase II	gi 1850592	L	174	74KDa	7.02	74KDa	7.27	13	appeared
36	Electron transfer flavoprotein-ubiquinone oxidoreductase	gi 52000614	9	158	61KDa	7.33	70KDa	7.11	15	appeared
37	Electron transfer flavoprotein-ubiquinone oxidoreductase	gi 52000614	9	321	61KDa	7.33	70KDa	7.18	14	appeared
38	vinculin (predicted), isoform CRA_a	gi 149031250	2	41	123KDa	5.54	146KDa	5.84	5	appeared
41	heat shock protein 1, beta (HSP90)	gi 40556608	L	268	83KDa	4.97	105KDa	4.65	6	appeared
42	heat shock protein 5 (HSP70 ptn5) glucose regulated protein	gi 25742763	6	296	72KDa	5.07	84KDa	4.7	14	appeared
43	70-Kda Heat Shock Cognate Protein	gi 178847300	6	309	60KDa	5.91	72KDa	5.13	20	appeared
44	DNAK-type molecular chaperone hsp72-ps1	gi 347019	8	369	71KDa	5.43	73KDa	5.21	16	appeared
45	grp75	gi 1000439	8	414	74KDa	5.87	79KDa	5.24	16	appeared
46	NADH dehydrogenase (ubiquinone) Fe-S protein 1, 75kDa	gi 53850628	L	283	80KDa	5.65	81KDa	5.14	12	appeared
47	isocitrate dehydrogenase 3 (NAD+) alpha	gi 16758446	7	221	40KDA	6.47	41KDa	6.3	26	appeared
48	succinate dehydrogenase complex, subunit A, flavoprotein (Fp)	gi 18426858	10	249	72KDa	6.75	72KDa	6.45	20	appeared
49	succinate dehydrogenase complex, subunit A, flavoprotein (Fp	gi 18426858	10	364	72KDa	6.75	71KDa	6.56	19	appeared
50	succinate dehydrogenase complex, subunit A, flavoprotein (Fp)	gi 18426858	10	355	72KDa	6.75	71KDa	6.82	21	appeared
51	Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase: Precursor	gi 6015047	8	219	36kDa	8.13	33KDa	6.47	35	appeared
52	glyceraldehyde 3-phosphate-dehydrogenase	gi 56188	4	265	36KDa	8.43	47KDa	7.43	3	appeared
53	glyceraldehyde 3-phosphate-dehydrogenase	gi 56188	3	74	36kDa	8.43	47KDa	7.65	17	appeared

Budas et al.

\$watermark-text

\$watermark-text

\$watermark-text

	9)
1	water	
	ern	
	nar	
	î	
	lext	

Spot	Protein	Accession No.	Peptide Count	Ion Score	Theorical	5	Exnerimental	ental	Сохегаде	Vol (% Ischemia)
					M.W.	pI	M.W.	pI	(%)	
54	ATP synthase beta subunit	gi 1374715	9	238	51KDa	4.92	65KDa	4.87	20	appeared
55	tubulin, beta, 2	gi 5174735	9	110	50kDa	4.79	66KDa	4.75	11	appeared
56	Desmin	gi 11968118	27	65	53kDa	5.21	64KDa	4.87	44	appeared
57	Desmin	gi 11968118	28	72	53kDa	5.21	64Kda	5.12	53	appeared
58	ubiquinol-cytochrome c reductase core protein I	gi 51948476	22	38	53kDa	5.57	51KDa	5.43	32	appeared
59	ubiquinol-cytochrome c reductase core protein I	gi 51948476	L	385	53kDa	5.57	52KDa	5.59	21	appeared
60	Coq9 protein	gi 51259441	2	62	35KDa	5.5	30KDa	4.87	10	appeared
61	Coq9 protein	gi 51259441	8	ND	35KDa	5.5	30KDa	5.09	25	19,5*
62	polymerase I and transcript release factor	gi:6679567	3	46	44kDa	5.43	64KDa	3.31	7	19,5*

1 1

Table 3

Summary of the function and localization of proteins whose phosphorylation was unique or increased 1.5X (in two out of three gels, of independent samples) in mitochondria from hearts treated with $\psi eRACK$ + ischemia relative to ischemia. The biological process, mitochondrial compartment and references to previous descriptions of protein phosphorylation or expression modulated by PKC_e are indicated in the table.

Function	Protein	Localization	Reference
Fatty Acid oxidation	carnitine palmitoyltransferase II	mitochondrial inner membrane	
	delta(3,5)-delta(2,4)-dienoyl-CoA isomerase: precursor	mitochondrial matrix	
Glycolysis/ Gluconeogenesis	aldolase A	mitochondrial matrix	
Krebs cycle	aconitase 2	mitochondrial matrix	
	ATP-specific succinyl-CoA synthase beta subunit	mitochondrial matrix	
	isocitrate dehydrogenase 3 (NAD+) alpha	mitochondrial matrix	6, 9
	dihydrolipoamide dehydrogenase (E3)	mitochondrial matrix	
	mitochondrial aconitase	mitochondrial matrix	
	oxoglutarate (alpha-ketoglutarate) dehydrogenase (lipoamide)	mitochondrial matrix	9
	pyruvate dehydrogenase (lipoamide) beta	mitochondrial matrix	9
	pyruvate dehydrogenase E1 alpha form 1 subunit	mitochondrial matrix	9
	glyceraldehyde 3-phosphate-dehydrogenase	mitochondrial matrix	6
Electron transport chain	electron transfer flavoprotein-ubiquinone oxidoreductase	mitochondrial inner membrane	
Complex I	NADH dehydrogenase (ubiquinone) Fe-S protein	mitochondrial inner membrane	
	electron transfer flavoprotein-ubiquinone oxidoreductase	mitochondrial inner membrane	
Complex II	succinate dehydrogenase complex, subunit A, flavoprotein (Fp)	mitochondrial inner membrane	6
	electron transfer flavoprotein-ubiquinone oxidoreductase	mitochondrial inner membrane	
Complex III	ubiquinol-cytochrome c reductase core protein I	mitochondrial inner membrane	
	electron transfer flavoprotein-ubiquinone oxidoreductase	mitochondrial inner membrane	
ATP Synthase	ATP synthase alpha subunit precursor	mitochondrial inner membrane	6
	ATP synthase beta subunit	mitochondrial inner membrane	6, 9
Ketone body metabolism	3-oxoacid CoA transferase 1	mitochondrial matrix	
	branched chain keto acid dehydrogenase E1, beta polypeptide	mitochondrial matrix	
	vimentin	Cytosol	6, 7
	tubulin alpha 1A	Cytosol	
Cytoskeletal elements	tubulin, beta, 2	Cytosol	
	desmin	Cytosol	6, 7
	vinculin, isoform CRA_a	Cytosol	6, 7
	heat shock protein 1, beta (HSP90)	Cytosol	
Heat Shock Protein	heat shock protein 5 (HSP70 ptn5) glucose regulated protein	Mitochondria	
	dnaK-type molecular chaperone hsp72-ps1	Mitochondria	6, 7
	grp75	Mitochondria	
Caveoli	polymerase I and transcript release factor (PTRV)	Caveolin	
	annexin A2	membranes (Caveolin)	6, 7

Budas et al.

Function	Protein	Localization	Reference
	sorting and assembly machinery component 50 homolog	mitochondrion outer membrane	
	hydroxysteroid dehydrogenase like 2 [Rattus norvegicus]	mitochondrial inner membrane	
Other	protein Coq9 protein	mitochondrial inner membrane	
	protein disulfide-isomerase A3 precursor	endoplasmic reticulum	
	striated-muscle alpha tropomyosin	Sarcomere	

Table 4

Predicted PKC Phosphorylation sites and validated sites of the mitochondrial proteins phosphorylated upon ischemia and $\psi \epsilon RACK$. The phosphorylated residue is underlined.

protein	predicted p- site	peptide sequence I	PKC isoenzyme	Validated ²
sorting and assembly machinery component 50 homolog	-			
	T160	LGRAEKV <u>T</u> FQFSYGT	ΡΚCδ/ζ	
	S164	EKVTFQF <u>S</u> YGTKETS	cPKC	
	S171	SYGTKET <u>S</u> YGLSFFK	ΡΚСε/δ	
	S189	GNFEKNF <u>S</u> VNLYKVT	РКСζ	
	S203	TGQFPWS <u>S</u> LRETDRG	cPKC	
	S216	RGVSAEYSFPLCKTS	РКСζ	
	T225	PLCKTSH <u>T</u> VKWEGVW	cPKCe/δ	
	S243	GCLARTA <u>S</u> FAVRKES	cPKC/ζ	
	S312	NKPLVLD <u>S</u> VFSTSLW	PKCe	
	S332	PIGDKLS <u>S</u> IADRFYL	РКСе	
dihydrolipoamide dehydrogenase	-			
	S10	SWSRVYC <u>S</u> LAKKGHF	cPKC/ζ	
	T165	GKNQVTA <u>T</u> TADGSTQ	РКСе	
	S170	TATTADG <u>S</u> TQVIGTK	РКСб	
	S208	VSSTGAL <u>S</u> LKKVPEK	cPKC	
	T279	FKLNTKV <u>T</u> GATKKSD	cPKC/ζ	
	T282	NTKVTGA <u>T</u> KKSDGKI	cPKC	
	S502	REANLAA <u>S</u> FGKPINF	cPKC	
hydroxysteroid dehydrogenase like 2	-			
	T12	TGKLAGC <u>T</u> VFITGAS	РКСб	
	T53	RHPKLLG <u>T</u> IYTAAEE	ΡΚCδ/ζ	yes
	T169	FKQHCAY <u>T</u> IAKYGMS	cPKC/ δ/ ζ	
	S237	SIFKRPK <u>S</u> FTGNFII	PKCs/ δ/ ζ	
	S426	TFRIVKD <u>S</u> LSDEVVR	РКСе	
	S476	DRADVVM <u>S</u> MATEDFV	РКСе	
	T493	FSGKLKP <u>T</u> MAFMSGK	cPKC/ζ/ δ/ ε	
protein disulfide-isomerase A3 precursor	-			
	S239	IKKFIQE <u>S</u> IFGLCPH	РКСζ	
	T228	AYTEKKM <u>T</u> SGKIKKF	рксζ	
	S229	YTEKKMT <u>S</u> GKIKKFI	cPKC	
	S239	IKKFIQE <u>S</u> IFGLCPH	ΡΚCδ/ζ	
	S303	KLNFAVA <u>S</u> RKTFSHE	cPKC	
	T306	FAVASRK <u>T</u> FSHELSD	ΡΚСδ/ε	yes

Page 21

protein	predicted p- site	peptide sequence I	PKC isoenzyme	Validated
	T452	YEVKGFP <u>T</u> IYFSPAN	РКСе	
	T463	SPANKKL <u>T</u> PKKYEGG	cPKC	
aconitase 2	-			
	T64	KRLNRPL <u>T</u> LSEKIVY	ΡΚϹζ	
	T366	HPVADVG <u>T</u> VAEKEGW	РКСζ	
	T415	LKCKSQF <u>T</u> ITPGSEQ	ΡΚCδ/ε	
	T467	IKKGEKN <u>T</u> IVTSYNR	ΡΚϹε/ ζ	
	T504	TALAIAG <u>T</u> LKFNPET	cPKC/ð	
	S690	GRAIITK <u>S</u> FARIHET	РКСζ	
	S770	IEWFRAG <u>S</u> ALNRMKE	ΡΚϹζ	
oxoglutarate (alpha-ketoglutarate) dehydrogenase (lipoamide)				
	T19	RPLTASQ <u>T</u> VKTFSQN	cPKC/e/d	
	S71	AWLENPK <u>S</u> VHKSWDI	cPKC	
	S103	PLSLSRS <u>S</u> LATMAHA	ΡΚϹε/χ/δ	yes
	T106	LSRSSLA <u>T</u> MAHAQSL	РКСб	
	S112	ATMAHAQ <u>S</u> LVEAQPN	РКСб	
	T190	DKVFHLP <u>T</u> IIFIGGQ	РКСб	
	T191	KVFHLPI <u>M</u> FIGGQE	РКСб	
	T262	LARLVRS <u>T</u> RFEEFLQ	РКСе	
	S663	AEYMAFG <u>S</u> LLKEGIH	РКСζ	
	S273	EFLQRKW <u>S</u> SEKRFGL	РКСζ	
	S274	FLQRKWS <u>S</u> EKRFGLE	cPKC/ð	
	S405	TEGKKVM <u>S</u> ILLHGDA	РКСζ	
	T437	PSYTTHG <u>T</u> VHVVVNN	РКС8	
	S861	LIVFTPK <u>S</u> LLRHPEA	РКСζ	
aldolase A	-			
	S39	AADESTG <u>S</u> IAKRLQS	ΡΚCδ/ζ	yes
	S46	SIAKRLQ <u>S</u> IGTENTE	PKCe	yes
	T227	HHVYLEG <u>T</u> LLKPNMV	РКСζ	
	S309	YGRALQA <u>S</u> ALKAWGG	сРКСб	
	8336	IKRALAN <u>S</u> LACQGKY	сРКСб	
acyl-Coenzyme A dehydrogenase, very long chain	-			
	S60	ETLSSDA <u>S</u> TREKPAR	cPKC/e	
	S72	PARAESK <u>S</u> FAVGMFK	PKC8/e	
	T194	KGILLYG <u>T</u> KAQKEKY	ΡΚϹζ	
	S227	SSGSDVA <u>S</u> IRSSAVP	сРКСб	

protein	predicted p- site	peptide sequence I	PKC isoenzyme	Validated ²
	S287	TAFVVER <u>S</u> FGGVTHG	ΡΚCδ	
	T347	GRFGMAA <u>T</u> LAGTMKA	РКСζ	
	S423	AISKIFG <u>S</u> EAAWKVT	ΡΚСζ	
	S517	RRRTGIG <u>S</u> GLSLSGI	РКСζ	
3-oxoacid CoA transferase 1	-			
	S16	SGLRLCA <u>S</u> ARNSRGA	cPKC	
	S35	CACYFSV <u>S</u> TRHHTKF	cPKC	
	T58	KDIPNGA <u>T</u> LLVGGFG	РКСδ	
	T140	VELTPQGTLAERIRA	ΡΚСζ	
	T163	YTSTGYG <u>T</u> LVQEGGS	PKCe	
	S179	IKYNKDG <u>S</u> VAIASKP	ΡΚϹε/ζ/δ	
	S253	EEIVDIG <u>S</u> FAPEDIH	РКСе	
	S283	EKRIERL <u>S</u> LRKEGEG	cPKC/ε/δ/ζ	
	T397	RGGHVNL <u>T</u> MLGAMQV	ΡΚСζ	
	T440	SKTKVVV <u>T</u> MEHSAKG	cPKC/e	
	T457	HKIMEKC <u>T</u> LPLTGKQ	сРКСб	
ATP synthase alpha subunit precursor	-			
	T102	ITPETFS <u>T</u> ISVVGLI	РКСб	
pyruvate dehydrogenase E1 alpha form 1 subunit	-			
	Т35	RNFANDA <u>T</u> FEIKKCD	РКСζ	
	T70	KYYRMMQ <u>T</u> VRRMELK	cPKC/e	
	T124	AYRAHGF <u>T</u> FNRGHAV	РКСб	
	T139	RAILAEL <u>T</u> GRRGGCA	РКСб	
	S152	CAKGKGG <u>S</u> MHMYAKN	ΡΚCδ/ζ	
	T266	ILCVREA <u>T</u> KFAAAYC	РКСб	
	S293	TYRYHGH <u>S</u> MSDPGVS	PKCe	yes
carnitine palmitoyltransferase II	.			
	S15	RAWPRCP <u>S</u> LVLGAPS	РКСб	
	T60	PIPKLED <u>T</u> MKRYLNA	cPKC	
	T156	LTRATNL <u>T</u> VSAVRFL	РКСб	
	S320	ETLKKVD <u>S</u> AVFCLCL	ΡΚϹζ	
	S411	AATNSSA <u>S</u> VETLSFN	РКСδ	
	S416	SASVETL <u>S</u> FNLSGAL	РКСб	
	T428	GALKAGI <u>T</u> AAKEKFD	РКСζ	
	T437	AKEKFDT <u>T</u> VKTLSID	ΡΚϹε/δ/χ	
	S462	FLKKKQL <u>S</u> PDAVAQL	РКСб	
	T491	ATYESCS <u>T</u> AAFKHGR	РКСζ	

Budas et al.

protein	predicted p- site	peptide sequence ¹	PKC isoenzyme	Validated
	T501	FKHGRTE <u>T</u> IRPASIF	cPKC	
	S513	SIFTKRCSEAFVRDP	рксζ	
Electron transfer flavoprotein-ubiquinone oxidoreductase				
	T46	PQITTHY <u>T</u> IHPREKD	cPKC	
	T229	KDGAPKT <u>T</u> FERGLEL	РКСб	
	T241	LELHAKV <u>T</u> IFAEGCH	ΡΚСε/δ	
	S306	DRHTYGG <u>S</u> FLYHLNE	РКСζ	
	S347	QRWKHHPSIRPTLEG	cPKC/δ	
	T401	PKIKGTH <u>T</u> AMKSGSL	ΡΚСε/δ/ζ	
	S407	HTAMKSG <u>S</u> LAAEAIF	ΡΚCε/δ	
	S490	WTLKHKG <u>S</u> DSEQLKP	cPKC/e	
	S550	IPVNRNL <u>S</u> IYDGPEQ	рксζ	yes
NADH dehydrogenase (ubiquinone) Fe-S protein 1, 75kDa				
	S69	RPLTTSM <u>S</u> LFIIAPT	PKCe/ζ	
	S110	PFILATS <u>S</u> LSVYSIL	PKCe	
	S128	WASNSKY <u>S</u> LFGALRA	ΡΚСε/δ	
	T139	ALRAVAQ <u>T</u> ISYEVTM	РКСб	
	S258	YPELYSTSFMTETLL	PKCe	
	S276	TFLWIRA <u>S</u> YPRFRYD	cPKC	
	T297	WKNFLPL <u>T</u> LAFCMWY	рксζ	
isocitrate dehydrogenase 3 (NAD+) alpha	-			
	S340	ATIKDGK <u>S</u> LTKDLGG	ΡΚCδ/ζ	
	Т334	IEAACFA <u>T</u> IKDGKSL	cPKC/8	
succinate dehydrogenase complex, subunit A, flavoprotein (Fp)				
	S28	ATRGFHF <u>S</u> VGESKKA	cPKC	
	S36	VGESKKA <u>S</u> AKVSDAI	РКСб	
	T118	WRWHFYD <u>T</u> VKGSDWL	cPKC	
	S169	QRAFGGQ <u>S</u> LKFGKGG	cPKC/δ/ζ	
	S206	RSLRYDT <u>S</u> YFVEYFA	ΡΚϹε/ζ	
	T244	HRIRAKN <u>T</u> IIATGGY	cPKC/ ε/δ/ ζ	
	S462	FGRACALSIAESCRP	cPKC/ð	
	S466	CALSIAE <u>S</u> CRPGDKV	cPKC	
	S484	KANAGEE <u>S</u> VMNLDKL	РКСб	
	S497	KLRFADG <u>S</u> VRTSELR	ΡΚϹε/χ/δ/ζ	
	S506	RTSELRL <u>S</u> MQKSMQS	cPKC	

protein	predicted p- site	peptide sequence ¹	PKC isoenzyme	Validate
	S510	LRLSMQK <u>S</u> MQSHAAV	ΡΚСδ/ζ	
	8522	AAVFRVG <u>S</u> VLQEGCE	ΡΚCδ/ζ	yes
	T618	AEHWRKH <u>T</u> LSYVDTK	ΡΚϹϩ/δ/ζ	
	S620	HWRKHTL <u>S</u> YVDTKTG	cPKC/ζ	
	T630	DTKTGKV <u>T</u> LDYRPVI	PKCe	
	T640	YRPVIDK <u>T</u> LNEADCA	РКСе	
Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase: Precursor	-			
	S30	RQLYFNV <u>S</u> LRSLSSS	cPKC/ζ	
	T153	SRYQKTF <u>T</u> VIEKCPK	ΡΚϹε/ζ	
	T225	RSLVNEL <u>T</u> FTARKMM	РКСб	
glyceraldehyde 3-phosphate-dehydrogenase	-			
	T57	THGKFNG <u>T</u> VKAENGK	cPKC/e	yes
	T185	AITATQK <u>T</u> VDGPSGK	РКСб	yes
	T292	NSNSHSS <u>T</u> FDAGAGI	ΡΚСε/δ	
ubiquinol-cytochrome c reductase core protein I	-			
	S107	TKSSKES <u>S</u> EARKGFS	ΡΚСε/δ	
	T120	FSYLVTA <u>I</u> IIVGVAY	РКСб	
	T122	YLVTAII <u>I</u> VGVAYAA	PKCe	
	T180	PLFVRHR <u>T</u> KKEIDQE	cPKC	
pyruvate dehydrogenase (lipoamide) alpha	-			
	Т35	RNFANDA <u>T</u> FEIKKCD	РКСζ	
	T70	KYYRMMQ <u>T</u> VRRMELK	cPKC/e	
	T124	AYRAHGF <u>T</u> FNRGHAV	РКСб	
	T139	RAILAEL <u>T</u> GRRGGCA	РКСб	
	S152	CAKGKGG <u>S</u> MHMYAKN	ΡΚСδ/ζ	
	T266	ILCVREA <u>T</u> KFAAAYC	РКСб	
	S293	TYRYHGH <u>S</u> MSDPGVS	РКСе	
pyruvate dehydrogenase (lipoamide) beta	-			
	S16	RGPLRQA <u>S</u> GLLKRRF	рксζ	
	T112	RPICEFM <u>T</u> FNFSMQA	РКСζ	
	T235	AKIERQG <u>T</u> HITVVAH	РКСζ	
	S282	DIEAIEASVMKTNHL	РКСб	
ATP synthase beta subunit	-			
	S51	RDYAAQS <u>S</u> AAPKAGT	РКСζ	
	S231	AKAHGGY <u>S</u> VFAGVGE	РКСζ	

protein	predicted p- site	peptide sequence ¹	PKC isoenzyme	Validated ²
	T288 S353	RVALTGL <u>T</u> VAEYFRD IIIIKKG <u>S</u> ITSVQAI	ΡΚϹζ ΡΚϹδ/ε/χ	
Branched chain keto acid dehydrogenase E1, beta polypeptide	-			
	T105 S177	FGGVFRC <u>T</u> VGLRDKY GDLFNCG <u>S</u> LTIRAPW	cPKC cPKC	

¹Predicted by Scansite (http://scansite.mit.edu).

 $^{2}\mathrm{Valic}$ ated sites reported in phosphosite (http://www.phosphosite.org).

\$watermark-text