1X3]-){Jewiarems 1Xa1-)ewla1ems

1X31-)lew1a1ems

NATIG,

o
HE

s sy,
Y

10

NS

NIH Public Access

Author Manuscript

Published in final edited form as:
Circ J. 2012 ; 76(6): 1476-1485.

Identification of ePKC targets during cardiac ischemic injury

Grant Budas?, Helio Miranda Costa Junior3, Julio Cesar Batista Ferreira2, André Teixeira
da Silva Ferreira®, Jonas Perales?, José Eduardo Krieger3, Daria Mochly-Rosen?, and
Deborah Schechtmanl”

Linstituto de Quimica, Departamento de Bioquimica, Universidade de Sdo Paulo, Brazil

2Department of Chemical and Systems Biology, Stanford University School of Medicine, Séo
Paulo, Brazil

3Instituto do Coracéo, S&o Paulo, Brazil

4Instituto Oswaldo Cruz, Rio de Janeiro, Brazil

Abstract

Background—Activation of e protein kinase C (ePKC) protects hearts from ischemic injury.
However, some of the mechanism(s) of ePKC mediated cardioprotection are still unclear.
Identification of ePKC targets may aid to elucidate ePKC-mediated cardioprotective mechanisms.
Previous studies, using a combination of ePKC transgenic mice and difference in gel
electrophoresis (DIGE), identified a number of proteins involved in glucose metabolism, whose
expression was modified by ePKC. These studies, were accompanied by metabolomic analysis,
and suggested that increased glucose oxidation may be responsible for the cardioprotective effect
of ePKC. However, whether these ePKC-mediated alterations were due to differences in protein
expression or phosphorylation was not determined.

Methods and Results—Here, we used an ePKC-specific activator peptide, weRACK, in
combination with phosphoproteomics to identify ePKC targets, and identified proteins whose
phosphorylation was altered by selective activation of ePKC most of the identified proteins were
mitochondrial proteins and analysis of the mitochondrial phosphoproteome, led to the
identification of 55 spots, corresponding to 37 individual proteins, which were exclusively
phosphorylated, in the presence of weRACK. The majority of the proteins identified were proteins
involved in glucose and lipid metabolism, components of the respiratory chain as well as
mitochondrial heat shock proteins.

Conclusion—In summary the protective effect of ePKC during ischemia involves
phosphorylation of several mitochondrial proteins involved in glucose, lipid metabolism and
oxidative phosphorylation. Regulation of these metabolic pathways by ePKC phosphorylation
may lead to ePKC-mediated cardioprotection induced by yeRACK.
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Introduction

We previously developed and used an ePKC isoenzyme- selective activator peptide and
found that ePKC activation reduces cardiac cell death induced by ischemia 1 2. To provide
insight into ePKC-mediated cytoprotective mechanisms, we used a proteomic approach
combining antibodies that specifically recognize proteins phosphorylated at the PKC
consensus phosphorylation site and an ePKC activator peptide 3. This approach led to the
identification of mitochondrial aldehyde dehydrogenase 2 (ALDHZ2) as an ePKC substrate,
whose phosphorylation and activation is necessary and sufficient to induce cardioprotection
during an ischemic injury 3. We also demonstrated that the cytoprotective mechanism of
ePKC is mediated, at least in part, by ALDH2-mediated detoxification of reactive
aldehydes, such as 4-hydroxy-2-nonenal (4-HNE), that accumulate in the heart during
ischemia 3-5. Studies by others, using transgenic and dominant negative ePKC mice,
identified other ePKC signaling complexes, composed of proteins involved in glucose and
lipid metabolism, and proteins related to transcription/ translation, suggesting that ePKC-
mediated cytoprotection involves regulation of other cellular processes 6-8. A study using
difference in gel eletrophoresis (DIGE) comparing hearts of mice overexpressing
catalytically active and dominant negative ePKC identified alterations in the levels of
proteins involved in glucose metabolism. Metabolomic studies confirmed that during
ischemia/ reperfusion glucose is metabolized faster in animals expressing constitutively
active ePKC 2. However, these studies did not clarify whether the differences in the
identified proteins were due to differential expression or phosphorylation levels.
Overexpression of ePKC lead to its mislocalization 10 and a compensatory effect observed
by 8PKC overexpression 2. Therefore, some of the targets identified in this study could
possibly have been phosphorylated by overexpressed SPKC or mis-localized ePKC.
Nevertheless, these studies suggested that the cardioprotective mechanism of ePKC is also
due to the regulation of glucose and lipid metabolism.

In the present study we used an adult heart Langendorff coronary perfusion system, and
treated isolated hearts with an ePKC specific activator peptide (yweRACK) prior to ischemia,
to determine phosphorylation events, following selective activation of ePKC. Proteins
whose phosphorylation increased in the presence of yweRACK were detected in 2D Gels
with a phospho-specific dye. Mass spectrometry of the phosphorylated proteins
demonstrated that most of the proteins identified in total heart lysates that were differentially
phosphorylated upon ePKC activation were mitochondrial proteins. Isolation of
mitochondria from yeRACK treated and control hearts confirmed that ePKC activation led
to an increase inphosphorylation levels of proteins involved in, the electron transport chain
as well as lipid metabolism.

Materials and Methods

Ex vivo rat heart model of cardiac ischemia

Animal protocols were approved by the Stanford University Institutional Animal Care and
Use Committee. Rat hearts (Wistar, 250-300g), each group consisting of three rats, were
perfused viathe aorta at a constant flow rate of 10 ml/min with oxygenated Krebs-Henseleit
buffer (120 mM NaCl, 5.8 mM KCI, 25 mM NaHCO3, 1.2 mM NaHCO3, 1.2 mM MgSO4,
1.2 mM CaCl2, and 10 mM dextrose, pH 7.4) at 37°C. After a 20 min. equilibration period,
hearts were subjected to 35 min global, no-flow ischemia. The ePKC-selective agonist
veRACK peptide [ HDAPIGYD 1! fused to the cell permeable Tat protein transduction
domain peptide, amino acids 47-57 12 (ImM) was perfused for 10 min immediately prior to
ischemia onset.
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Preparation of heart lysates and sub-cellular fractionation

At the end of ischemia, hearts were removed from the cannnula and immediately
homogenized on ice to obtain total and mitochondrial fractions. To obtain the total lysate
fraction, heart ventricles were homogenized in BufferA [7M urea, 2M tiourea, 4% CHAPS,
5mM magnesium acetate, 17pg/mL PMSF and phosphatase inhibitor cocktail diluted 1:300
(Sigma # P8340 and Sigma # P5726)]. To obtain the mitochondrial fraction, heart ventricles
were homogenized in ice-cold mannitol-sucrose (MS) buffer [210 mM mannitol, 70 mM
sucrose, 5 mM MOPS and 1mM EDTA containing Protease) and phosphatase Inhibitors as
above]. The homogenate was centrifuged at 700g for 10 minutes (to pellet the cytoskeletal
fraction), the resultant supernatant was filtered through gauze, and centrifuged at 10,0009
for 10 minutes (to pellet the mitochondrial fraction). The mitochondrial pellet was washed
3x in MS buffer before the pellet was resuspended in DIGE buffer.

Two-Dimensional Gel Electrophoresis

Protein samples (300pLg for analytic gels and 500 g for preparative gels of total heart lysate
and 250 g for analytic/ preparative gels of mitochondrial fraction) were applied onto 3-10
linear immobilized pH gradient strips (13cm, GE, Healthcare, Life Science). Strips were
rehydrated for 16 hours at room temperature. Isoelectric focusing (IEF) was performed on
an IPGphor Il apparatus (GE Healthcare Life Science) at 17 KVh. For the second
dimension strips were incubated at room temperature, for 20 min in equilibration buffer [6
M urea, 2% (w/v) SDS, 50 mM Tris-HCI pH 6.8, 30% (v/v) glycerol, 0.001% (w/v)
bromophenol blue] with 2% (w/v) DTT, followed by incubation with 4% (w/v)
iodoacetamide in equilibrium buffer, for 20 min. The second dimension was separated using
vertical SDS-PAGE. Experiments were performed in triplicates. Phospho-proteins were
detected by staining with Pro-Q Diamond (Invitrogen) per manufacturer’s instructions. Gels
were scanned using a Typhoon TRI scanner (Healthcare Life Science), stained with
Coomassie Brilliant Blue G250 (CBB) 13 and scanned using a UTA-1100 scanner and
Labscan v 5.0 software (GE Healthcare Life Science).

Image analysis was performed using Image Master Software v.5.01 (GE Healthcare Life
Science). For each pair of samples analyzed, individual spot volumes of replicate gels were
determined in Pro-Q Diamond stained gels (phospho-proteins), followed by normalization
(individual spot volume/ volume of all spots x 100). Spots (of treated samples) that appeared
or showed a change in spot volume of least 1.5 fold as compared to samples of hearts
submitted to ischemia alone were excised from CBB-stained preparative gels and identified
by mass spectrometry. Differences between experimental groups were evaluated by the
Mann-Whitney t-test for proteomic analysis. A * p value < 0.05 was considered statistically
significant.

“In-gel” protein digestion and MALDI-TOF/TOF MS

Digestion of selected spots was performed as previously described 14. Matrix-Assisted Laser
Desorption ionization Time-of-Flight/Time-of-Flight Mass Spectrometry) as analysis
executed aspreviously described 1°. MASCOT MS/MS lon Search
(www.matrixscience.com) software was used to blast sequences against the SwissProt and
NCBInr databanks. Combined MS-MS/MS searches were conducted with parent ion mass
tolerance at 50 ppm, MS/MS mass tolerance of 0.2 Da, carbamidomethylation of cysteine
(fixed modification) and methionine oxidation (variable modification). According to
MASCOT probability analysis only hits with significant P < 0.05 were accepted Spots from
total lysates were identified at the Mass Spectrometry Facility at Stanford University (mass-
spec.stanford.edu).
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Results

Identification of phosphoproteins

Hearts were exposed to global, no-flow ischemia (35 min) in the presence or absence of
yeRACK (1M) applied for normoxia 10 min prior to an ischemic onset, with no wash-out,
as previously described 16. Both groups had a 20 min equilibration period, after which hearts
were subjected to 30 min global, no-flow ischemia. To one of the groups the ePKC-selective
agonist peptide, yweRACK, was perfused for 10 min (1M), immediately prior to ischemia
onset and kept throughout ischemia. Total lysate of 3 hearts, from 3 independent
experiments, were prepared, and run individually on 2D gels. Considering phosphorylated
spots that had at least a 1.5X increase, we compared phosphorylated spots from hearts of
animals subjected to, ischemia and weRACK + ischemia. The phosphorylation of 20 spots
increased only in ischemic hearts treated with weRACK. Of these, 18 spots were identified
by mass spectrometry (Figure 1, 2 and Table 1).

Since the majority of the proteins (~70%) identified were mitochondrial proteins and since a
number of previous studies demonstrated that ePKC can interact with and phosphorylate
mitochondrial proteins 8- 17-20 we set out to analyze the ePKC phosphoproteome in isolated
mitochondria.

Identification of phosphoproteins in mitochondrial fractions

Mitochondria from, ischemia and yeRACK+ ischemia treated hearts were isolated as
described in materials and methods. In a previous study we verified the purity of our
mitochondrial preparation by electron microscopy and Western blot analysis of specific
mitochondrial proteins 20, Mitochondrial proteins were separated by 2-D gel electrophoresis
and phosphoproteins stained with Pro-Q Diamond. Of the 183 spots that appeared or were
increased in gels of mitochondria from hearts of animals treated with weRACK + ischemia,
62 spots were visible by Coomassie Brilliant Blue and 56 spots corresponding to 38
different proteins were identified by in-gel excision followed by mass spectrometry (Figures
3, 4 and Table 2). Twenty seven proteins were mitochondrial proteins. Nine proteins were
mitochondrial inner membrane proteins and one outer membrane protein. Proteins involved
in fatty acid oxidation, electron transport chain (complexes I-1V), heat shock proteins as well
as structural proteins were also identified. Interestingly, protein disulfide-isomerase A3
precursor, oxoglutarate (alpha-ketoglutarate) dehydrogenase (lipoamide), tubulin alpha 1A,
mitochondrial aconitase, creatine kinase, mitochondrial 2, acyl-Coenzyme A dehydrogenase
very long chain, 3-oxoacid CoA transferase 1, carnitine palmitoyltransferase 11, electron
transfer flavoprotein-ubiquinone oxidoreductase, succinate dehydrogenase complex, subunit
A, flavoprotein (Fp), glyceraldehyde 3-phosphate-dehydrogenase, desmin, ubiquinol-
cytochrome c reductase core protein I and Coq9 protein had a change in more than one
phospho-spot indicative of multiple phosphorylation sites.

Recently we showed that translocation of ePKC to the mitochondria is mediated by HSP90,
therefore the identified substrates can be direct targets of ePKC 20, Using scansite (http:/
scansite.mit.edu/) we predicted PKC phosphorylation sites of the mitochondrial proteins
whose phosphorylation increased upon treatment with yweRACK. All identified
mitochondrial proteins had putative PKC phosphorylation some which matched
phosphorylation sites deposited in http://www.phosphosite.org/ (Table 4).

Discussion

Several lines of evidence suggest that selective ePKC activation reduces cardiac damage due
to ischemic injury. Activation of ePKC reduces infarct size and improves functional
recovery of the heart 1-3whereas ePKC inhibition or knockout negates the infarct-sparing
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effect of ischemic preconditioning 1 3 9. 21. 22 A number of mechanisms have been
proposed for ePKC mediated cardioprotection, including regulation of sarcolemmal and/or
mitoKa1p channels 17: 23, regulation of gap-junction permeance through phosphorylation of
connexin 43 24, modulation of proteasomal activity 16 or regulation of mitochondrial
permeability transition pore (MPTP) opening through direct phosphorylation of MPTP
components 8. We recently identified mitochondrial ALDH?2 as a direct ePKC substrate
whose phosphorylation and activation is essential for ePKC-mediated cardioprotection 3.
The cytoprotective mechanism of ALDH2 activation by ePKC is due to the increased
metabolism of reactive aldehydes, such as 4-Hydroxy-2-nonenal (4-HNE), which are
produced as a by-product of ROS-induced lipid peroxidation, and accumulate, in the
ischemic/ reperfused heart 25, In the present study, we used the Pro-Q Diamond phospho-
specific staining method to label proteins whose phosphorylation increased by yweRACK
during ischemia. The majority (~70%) of the ePKC phosphoproteins identified in total heart
homogenates treated with yweRACK during ischemia were mitochondrial proteins. The
observation that ePKC activation and cytoprotection results in phosphorylation of
mitochondrial proteins and is consistent with other studies reporting that ePKC-mediated
cardioprotection is mediated by phosphorylation of mitochondrial proteins 1: 3. 9. 17,18, 22,

To provide a more extensive analysis of the ePKC mitochondrial phosphoproteome, we
repeated the Pro-Q Diamond analysis on the cardiac mitochondrial-enriched subfraction. In
the presence of yweRACK we saw the appearance of 182 phosphorylated spots, suggesting
that ePKC activation results in phosphorylation of a number of mitochondrial proteins. We
identified novel mitochondrial ePKC phosphoproteins involved in lipid oxidation,
glycolysis, electron transport chain (including proteins from complexes I-1V), ketone body
metabolism, and heat shock proteins.

We found an increase in the phosphorylation of inner-mitochondrial protein components of
the respiratory chain, (complexes I, 1l and 111); NADH dehydrogenase (ubiquinone) Fe-S
protein, electron transfer flavoprotein-ubiquinone oxidoreductase, succinate dehydrogenase
complex, subunit A, flavoprotein (Fp) and ubiquinol-cytochrome c reductase core protein I.
Our results are in agreement with a number of biochemical and functional analyses which
found ePKC to interact with, and phosphorylate inner-mitochondrial proteins involved in
mitochondrial respiration 79 26, Further, the presence of ePKC in a highly purified inner
mitochondrial membrane preparation has already been previously demonstrated 23. An
increase in the activity of the electron transport chain and activation of cytochrome ¢
oxidase subunit IV (COX) by direct ePKC phosphorylation has also been previously
demonstrated 27. COX activation was suggested to be one of the cardioprotective
mechanisms of ePKC, possibly due to increased electron flux through the electron transport
chain, resulting in enhanced ATP generation and reduced ROS generation 22 2728, An
ePKC-mediated increase in cytochrome ¢ oxidase activity was also shown to protect lens
from ischemic damage 2°. Selective activation of ePKC with yweRACK increased the
phosphorylation and activity of complexes I, 1l and IV in synaptic mitochondria, indicating
that other components of the electron transport chain are also regulated by ePKC
phosphorylation 39, and ePKC activation led to a decrease in mitochondrial ROS generation
of neuronal mitochondria 3. In agreement with a role for ePKC in mitochondrial
respiration, hearts of constitutively active ePKC transgenic mice demonstrate preserved
coupling of oxidative phosphorylation, maintained mitochondrial membrane potential and
decreased cytochrome c release induced by ischemic reperfusion 31. The ePKC transgenic
mice used have a mutation of Alal® to Glu in the ePKC resulting in constitutively active
ePKC and increased resistance to cardiac ischemic reperfusion 8. Interestingly, in
constitutively active ePKC transgenic mice, mitochondrial PKC expression is preferentially
increased over cytosolic expression, suggesting that the active form of PKC results in its
mitochondrial translocation 8. Taken together, these data suggest that phosphorylation of
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intra-mitochondrial targets is crucial for ePKC-mediated cytoprotection. In the present study
we identify other components of the respiratory chain and inner mitochondrial
phosphorylated proteins. However, whether there is a direct physical association between
ePKC and each of the inner mitochondrial ePKC phosphoproteins identified here, and
whether these are direct or indirect ePKC substrates remains to be determined. Nevertheless
future studies can, be directed by the results obtained here.

We did not detect ALDH2, however this may be due to the fact that different methods of
detecting protein phosphorylation have different sensitivities. Some of the ePKC targets
identified can be indirect targets whose phosphorylation may be activated upon ALDH2
activation.

Using difference in gel eletrophoresis (DIGE) of cardiac mitochondria from transgenic mice
expressing constitutively active or dominant negative ePKC it was found that the majority of
spots unique to constitutively active ePKC corresponded to proteins involved in glucose
metabolism 9. These studies were combined with metabolomic studies which detected an
increase in glucose metabolites in hearts expressing constitutively active ePKC subjected to
ischemia/ reperfusion °. The authors proposed that activating glycolytic pathways during
ischemia is a novel mechanism for the cardioprotective role of ePKC. In the present study
we used a phospho-specific dye and yweRACK to investigate direct protein phosphorylation
events mediated by ePKC. Despite the different methods and methodology used to activate
ePKC, (constitutively active transgenic vs. dynamic activation) we identified many of the
same proteins, previously described in the DIGE study, including; isocitrate dehydrogenase,
oxoglutarate (alpha-ketoglutarate) dehydrogenase, pyruvate dehydrogenase, succinate
dehydrogenase. [ 7- 9 and Table 4]. We also identified additional ePKC substrates involved
in glycolysis, and Krebs cycle such as: aldolase A, ATP-specific succinyl-CoA synthase
beta subunit, dihydrolipoamide dehydrogenase (E3), mitochondrial aconitase and aconitase
2, confirming that ePKC activation leads to phosphorylation of proteins involved in
glycolysis and the Krebs cycle. Our identification of aconitase as an ePKC target suggests
that regulation of the TCA cycle is mediated by ePKC. Aconitase has been previously
identified as a PKCpII substrate in diabetic rats, however, aconitase phosphorylation by
PKCBII impaired TCA cycle since there was an increase in reverse activity of aconitase
(isocitrate to aconitase) 32. While we identified some proteins identified previously, others
were not detected in the present study, such as proteins involved in the Malate/Aspartate
shuttle. This could be explained by the different methodology or the sensitivity of the
methods (DIGE vs ProQ Diamond) and that we only identified the more abundant
phosphorylated proteins. Alternatively, some of the proteins previously detected could have
their expression and not phosphorylation status altered °. In a study identifying ePKC
complexes it has been suggested that ePKC may also play a role in regulating transcription
and translation processes 6. Accordingly, the phosphorylation of Coq9, a key regulator of
coenzyme Q synthesis 33, was also regulated by ePKC in the present study. Further studies
should be performed to determine the specific regulation of glycolytic pathways by ePKC
phosphorylation and whether different isoenzymes can phosphorylate different sites.

ePKC could also have a direct or indirect role in mitochondrial protein assembly, folding,
and import since we identified three mitochondrial heat shock proteins that play a role in the
import and folding of proteins inside the mitochondria, and sorting and assembly machinery
component 50 (SAM50), homolog of a protein involved in the assembly of outer
mitochondrial membrane proteins 34.

Cardioprotective signals from G protein coupled receptors (GPCRs), activated for example
by bradykinin, propagating from the plasma membrane to the mitochondria through
signalosomes, vesicular multimolecular complexes derived from caveoli have been
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previously proposed 3. In fact ePKC was found in signalosomes and inhibition of ePKC by
eV1-2 blocks signalosome stimulation of mitoK o1p 3°. We found two proteins that are
found in caveoli, Annexin A2 and PTRF also known as Cavin 36, these proteins could be
part of the signalosome probably co-purified with our mitochondrial fraction. PTRF
phosphorylation has been shown to be important in caveoli formation 3.

Conclusions

A number of mechanisms have been proposed for ePKC-mediated cardioprotection by
preconditioning. In the present study we identified several ePKC phosphoproteins which
may be responsible for the cardioprotective effect of ePKC. The ePKC targets identified are
in line with many of the previously proposed mechanisms for ePKC mediated
cardioprotection. We identified components of the signalosome contributing to the idea that
ePKC-mediated cardioprotection involves transduction of GPCR signaling to the
mitochondria 3°. We also found components of lipid and carbohydrate oxidation pathways
consistent with the idea that lipid and carbohydrate metabolism is modulated by ePKC ©.
Activation of the respiratory chain and increase in oxygen consumption have also been
proposed to be protective mechanisms of ePKC during preconditioning, to this end we
identified components of Krebs cycle, and respiratory chain, whose phosphorylation was
modulated by ePKC 27:29. 30 The exact mechanisms by which ePKC phosphorylation leads
to these different cardioprotective pathways still needs to be elucidated. The data obtained in
the present study can therefore direct further studies to characterize the specific role of
individual mitochondrial protein phosphorylation in ePKC-mediated cardioprotection.
Taken together, our data suggest that ePKC-mediated phosphorylation events in the
mitochondria are important for the maintenance of metabolic activity and cardioprotection
during ischemic injury.
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A B C
Normoxia Ischaemia wsRACK + Ischemia

Commassie G-250

Pro-Q Diamond

Figurel.

Detection of direct and indirect ePKC substrates in total rat heart lysates. Representative
2DE gels (n= 3 hearts of individual animals) of lysates from control hearts (A and D), hearts
subjected to, ischemia alone (B and E) and Ischemia + yweRACK (C and F) as indicated.
Coommassie blue G250 stained gels (A-C) and gels stained with phospho-specific dye Pro-
Q Diamond (D-F). Spots used to align gels are labeled (A and D).
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Coomassie blue G250 stained gel of total heart lysate treated with yweRACK+ ischemia
indicating the spots identified by mass spectrometry whose phosphorylation significantly

increased in hearts from rats treated with yeRACK + ischemia as compared to hearts
subjected to ischemia alone. For the annotation of the proteins identified see Table 1.
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Figure 3.

Detection of direct and indirect ePKC substrates in isolated rat heart mitochondria.
Representative 2DE gels (n=3 of mitochondria isolated from individual animals) of lysates
from control hearts (A and D) and hearts subjected to, Ischemia (B and E) and yweRACK+
ischemia (C and F) as indicated. Coommassie blue G250 stained gels (A-C) and gels stained
with phospho-specific dye Pro-Q Diamond (D-F). Spots used to align gels are labeled (A

and D).
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Representative 2DE gels (n=3 of mitochondria isolated from individual animals) of lysates

from hearts subjected to, Ischemia and yweRACK+ ischemia as indicated in figure 1.

Coommassie blue G250 stained gels upper panels and gels stained with phospho-specific

dye Pro-Q Diamond, lower panel
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Summary of the function and localization of proteins whose phosphorylation was unique or increased 1.5X (in
two out of three gels, of independent samples) in mitochondria from hearts treated with yweRACK + ischemia

relative to ischemia. The biological process, mitochondrial compartment and references to previous
descriptions of protein phosphorylation or expression modulated by PKC, are indicated in the table.

Function Protein L ocalization Reference
Fatty Acid oxidation carnitine palmitoyltransferase 1 mitochondrial inner membrane
delta(3,5)-delta(2,4)-dienoyl-CoA isomerase: precursor mitochondrial matrix
Glycolysis/ Gluconeogenesis | aldolase A mitochondrial matrix
Krebs cycle aconitase 2 mitochondrial matrix
ATP-specific succinyl-CoA synthase beta subunit mitochondrial matrix
isocitrate dehydrogenase 3 (NAD+) alpha mitochondrial matrix 6,9
dihydrolipoamide dehydrogenase (E3) mitochondrial matrix
mitochondrial aconitase mitochondrial matrix
oxoglutarate (alpha-ketoglutarate) dehydrogenase (lipoamide) | mitochondrial matrix 9
pyruvate dehydrogenase (lipoamide) beta mitochondrial matrix 9
pyruvate dehydrogenase E1 alpha form 1 subunit mitochondrial matrix 9
glyceraldehyde 3-phosphate-dehydrogenase mitochondrial matrix 6
Electron transport chain electron transfer flavoprotein-ubiquinone oxidoreductase mitochondrial inner membrane
Complex | NADH dehydrogenase (ubiquinone) Fe-S protein mitochondrial inner membrane
electron transfer flavoprotein-ubiquinone oxidoreductase mitochondrial inner membrane
succinate dehydrogenase complex, subunit A, flavoprotein
Complex Il (Fp) mitochondrial inner membrane | 6
electron transfer flavoprotein-ubiquinone oxidoreductase mitochondrial inner membrane
Complex I11 ubiquinol-cytochrome c reductase core protein | mitochondrial inner membrane
electron transfer flavoprotein-ubiquinone oxidoreductase mitochondrial inner membrane
ATP Synthase ATP synthase alpha subunit precursor mitochondrial inner membrane | 6
ATP synthase beta subunit mitochondrial inner membrane | 6,9
Ketone body metabolism 3-oxoacid CoA transferase 1 mitochondrial matrix
branched chain keto acid dehydrogenase E1, beta polypeptide | mitochondrial matrix
vimentin Cytosol 6,7
tubulin alpha 1A Cytosol
Cytoskeletal elements tubulin, beta, 2 Cytosol
desmin Cytosol 6,7
vinculin, isoform CRA_a Cytosol 6,7
heat shock protein 1, beta (HSP90) Cytosol
Heat Shock Protein heat shock protein 5 (HSP70 ptn5) glucose regulated protein Mitochondria
dnaK-type molecular chaperone hsp72-ps1 Mitochondria 6,7
grp75 Mitochondria
Caveoli polymerase | and transcript release factor (PTRV) Caveolin
annexin A2 membranes (Caveolin) 6,7
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Function Protein L ocalization Reference
mitochondrion outer
sorting and assembly machinery component 50 homolog membrane
hydroxysteroid dehydrogenase like 2 [Rattus norvegicus] mitochondrial inner membrane
Other protein Coq9 protein mitochondrial inner membrane

protein disulfide-isomerase A3 precursor

endoplasmic reticulum

striated-muscle alpha tropomyosin

Sarcomere
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Table 4

Predicted PKC Phosphorylation sites and validated sites of the mitochondrial proteins phosphorylated upon

1X31-)ewiarems 1Xa1-)ew1a1ems

1Xa1-)1ewa1ems

ischemia and yweRACK. The phosphorylated residue is underlined.
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) predicted p- ) 1 ~ PKC ) 5
protein site peptide sequence isoenzyme Validated
sorting and assembly machinery component 50 homolog -
T160 LGRAEKVTFQFSYGT PKC8/G
S164 EKVTFQFSYGTKETS cPKC
S171 SYGTKETSYGLSFFK PK Cel/6
S189 GNFEKNFSVNLYKVT PKCC
S203 TGQFPWSSLRETDRG cPKC
S216 RGVSAEYSFPLCKTS PKCC
T225 PLCKTSHTVKWEGVW cPK Cel/s
S243 GCLARTASFAVRKES cPKCIG
S312 NKPLVLDSVFSTSLW PKCe
S332 PIGDKLSSIADRFYL PKCe
dihydrolipoamide dehydr ogenase -
S10 SWSRVYCSLAKKGHF cPKC/C
T165 GKNQVTATTADGSTQ PKCe
S170 TATTADGSTQVIGTK PKC8
S208 VSSTGALSLKKVPEK cPKC
T279 FKLNTKVTGATKKSD cPKCIG
T282 NTKVTGATKKSDGKI cPKC
S502 REANLAASFGKPINF cPKC
hydroxysteroid dehydrogenase like 2 -
T12 TGKLAGCTVFITGAS PKC8
T53 RHPKLLGTIYTAAEE PKCB8/(, yes
T169 FKQHCAYTIAKYGMS cPKC/ 8/ ¢
S237 SIFKRPKSFTGNFII PKCs 8/ ¢
426 TFRIVKDSLSDEVVR PKCe
SAT6 DRADVVMSMATEDFV PKCe
T493 FSGKLKPTMAFMSGK | cPKC/C/ 8/ e
protein disulfide-isomerase A3 precur sor -
S239 IKKFIQESIFGLCPH PKC(
T228 AYTEKKMTSGKIKKF PKC(
S229 YTEKKMTSGKIKKFI cPKC
S239 IKKFIQESIFGLCPH PK C8/G
S303 KLNFAVASRKTFSHE cPKC
T306 FAVASRKTFSHELSD PKCé/e yes
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predicted p- 1 PKC 2
protein site peptide sequence isoenzyme Validated
T452 YEVKGFPTIYFSPAN PKCe
T463 SPANKKLTPKKYEGG cPKC
aconitase 2 -
T64 KRLNRPLTLSEKIVY PKC(
T366 HPVADVGTIVAEKEGW PKC(C
T415 LKCKSQFTITPGSEQ PKCsle
T467 IKKGEKNTIVTSYNR PKCel ¢
T504 TALAIAGTLKFNPET cPKC/8
S690 GRAIITKSFARIHET PKC(C
S770 IEWFRAGSALNRMKE PKC(
oxoglutar ate (alpha-ketoglutar ate) dehydrogenase
(lipoamide) -
T19 RPLTASQTVKTFSQN cPKCle/d
S71 AWLENPKSVHKSWDI cPKC
S103 PLSLSRSSLATMAHA PK Celx/8 yes
T106 LSRSSLATMAHAQSL PKC8
S112 ATMAHAQSLVEAQPN PKC8
T190 DKVFHLPTIIFIGGQ PKC8
T191 KVFHLPIMFIGGQE PKC8
T262 LARLVRSTRFEEFLQ PKCe
S663 AEYMAFGSLLKEGIH PKC(
S273 EFLQRKWSSEKRFGL PKC(C
S274 FLORKWSSEKRFGLE cPKC/8
405 TEGKKVMSILLHGDA PKC(
T437 PSYTTHGTVHVVVNN PKC8
S861 LIVFTPKSLLRHPEA PKC(C
aldolase A -
S39 AADESTGSIAKRLQS PKCB8/G yes
$46 SIAKRLQSIGTENTE PK Ce yes
T227 HHVYLEGTLLKPNMV PKCC
S309 YGRALQASALKAWGG cPKC8
S336 IKRALANSLACQGKY cPKC8
acyl-Coenzyme A dehydrogenase, very long chain -
S60 ETLSSDASTREKPAR cPKCle
S72 PARAESKSFAVGMFK PK C8le
T19%4 KGILLYGTKAQKEKY PKC(C
S227 SSGSDVASIRSSAVP cPKC8
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) predicted p- ) 1 ~ PKC ) 2
protein site peptide sequence isoenzyme Validated
S287 TAFVVERSFGGVTHG PKC8
T347 GRFGMAATLAGTMKA PKC(
423 AISKIFGSEAAWKVT PKCC
S517 RRRTGIGSGLSLSGI PKC(C
3-oxoacid CoA transferase 1 -
S16 SGLRLCASARNSRGA cPKC
S35 CACYFSVSTRHHTKF cPKC
T58 KDIPNGATLLVGGFG PKC8
T140 VELTPQGTLAERIRA PKC(C
T163 YTSTGYGTILVQEGGS PKCe
S179 IKYNKDGSVAIASKP PK Ce/C/6
S253 EEIVDIGSFAPEDIH PKCe
S283 EKRIERLSLRKEGEG cPK Clel8I(
T397 RGGHVNLTMLGAMQV PKCC
T440 SKTKVVVIMEHSAKG cPKCle
T457 HKIMEKCTLPLTGKQ cPKC8
ATP synthase alpha subunit precur sor - | |
T102 | ITPETFSTISVVGLI | PKC8
pyruvate dehydrogenase E1 alpha form 1 subunit - | |
T35 RNFANDATFEIKKCD PKC(
T70 KYYRMMQTVRRMELK cPKCle
T124 AYRAHGFTFNRGHAV PKC8
T139 RAILAELTGRRGGCA PKC8
S152 CAKGKGGSMHMYAKN PK C8/C
T266 ILCVREATKFAAAYC PKC8
S293 TYRYHGHSMSDPGVS PKCe yes
carnitine palmitoyltransferase 11 -

S15 RAWPRCPSLVLGAPS PKC8
T60 PIPKLEDTMKRYLNA cPKC
T156 LTRATNLTVSAVRFL PKC8
S320 ETLKKVDSAVFCLCL PKC(
A1l AATNSSASVETLSFN PKC8
416 SASVETLSFNLSGAL PKC8
T428 GALKAGITAAKEKFD PKC(
T437 AKEKFDTTVKTLSID PKCel6/y
$462 FLKKKQLSPDAVAQL PKC8
T491 ATYESCSTAAFKHGR PKC(
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) predicted p- ) 1 ~ PKC ) 2
protein site peptide sequence isoenzyme Validated
T501 FKHGRTETIRPASIF cPKC
S513 SIFTKRCSEAFVRDP PKC(
Electron transfer flavoprotein-ubiquinone
oxidoreductase -
T46 PQITTHYTIHPREKD cPKC
T229 KDGAPKTTFERGLEL PKC8
T241 LELHAKVTIFAEGCH PK Ce/s
S306 DRHTYGGSFLYHLNE PKCC
S347 QRWKHHPSIRPTLEG cPKC/8
T401 PKIKGTHTAMKSGSL PKCel8/(
407 HTAMKSGSLAAEAIF PKCel/6
$490 WTLKHKGSDSEQLKP cPKCle
S550 IPVNRNLSIYDGPEQ PKC( yes
NADH dehydrogenase (ubiquinone) Fe-Sprotein 1,
75kDa -
S69 RPLTTSMSLFIAPT PKCel/C
S110 PFILATSSLSVYSIL PKCe
S128 WASNSKYSLFGALRA PK Ce/6
T139 ALRAVAQTISYEVTM PKC8
S258 YPELYSTSFMTETLL PKCe
S276 TFLWIRASYPRFRYD cPKC
T297 WKNFLPLTLAFCMWY PKCC
isocitrate dehydrogenase 3 (NAD+) alpha -
S340 ATIKDGKSLTKDLGG PK C8/C
T334 IEAACFATIKDGKSL cPKC/8
succinate dehydr ogenase complex, subunit A,
flavoprotein (Fp) -
S28 ATRGFHFSVGESKKA cPKC
S36 VGESKKASAKVSDAI PKC8
T118 WRWHFYDTVKGSDWL cPKC
S169 QRAFGGQSLKFGKGG cPK C/8/C
S206 RSLRYDTSYFVEYFA PKCel/C
T244 HRIRAKNTIIATGGY cPK Clel8I(
$462 FGRACALSIAESCRP cPKC/8
466 CALSIAESCRPGDKV cPKC
484 KANAGEESVMNLDKL PKC8
497 KLRFADGSVRTSELR PK Celx/8/G
S506 RTSELRLSMQKSMQS cPKC
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predicted p- 1 PKC 2
protein site peptide sequence isoenzyme Validated
S510 LRLSMQKSMQSHAAV PKCB8/G
S522 AAVFRVGSVLQEGCE PKCS8/( yes
T618 AEHWRKHTLSYVDTK PK Ce/6/C
S620 HWRKHTLSYVDTKTG cPKCIG
T630 DTKTGKVTLDYRPVI PK Ce
T640 YRPVIDKTLNEADCA PKCe
Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase: Precur sor -
S30 RQLYFNVSLRSLSSS cPKC/C
T153 SRYQKTFTVIEKCPK PKCelG
T225 RSLVNELTFTARKMM PKC8
glyceraldehyde 3-phosphate-dehydr ogenase -
T57 THGKFNGTVKAENGK cPKCle yes
T185 AITATQKTVDGPSGK PKC8 yes
T292 NSNSHSSTFDAGAGI PKCe/8
ubiquinol-cytochrome c reductase core protein | -
S107 TKSSKESSEARKGFS PKCe/8
T120 FSYLVTAI IIVGVAY PKC8
T122 YLVTAIIVGVAYAA PKCe
T180 PLFVRHRTKKEIDQE cPKC
pyruvate dehydrogenase (lipoamide) alpha -
T35 RNFANDATFEIKKCD PKC(C
T70 KYYRMMQTVRRMELK cPKCle
T124 AYRAHGFTFNRGHAV PKC8
T139 RAILAELTGRRGGCA PKC8
S152 CAKGKGGSMHMYAKN PKCB8/(
T266 ILCVREATKFAAAYC PKC8
S293 TYRYHGHSMSDPGVS PKCe
pyruvate dehydrogenase (lipoamide) beta -
S16 RGPLRQASGLLKRRF PKC(C
T112 RPICEFMTFNFSMQA PKC(
T235 AKIERQGTHITVVAH PKCC
S282 DIEAIEASVMKTNHL PKC8
ATP synthase beta subunit -
S51 RDYAAQSSAAPKAGT PKC(C
S231 AKAHGGYSVFAGVGE PKC(
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predicted p- 1 PKC 2
protein site peptide sequence isoenzyme Validated
T288 RVALTGLTVAEYFRD PKC(C
S353 IHNKKGSITSVQAI PKCé/ely
Branched chain keto acid dehydrogenase E1, beta
polypeptide -
T105 FGGVFRCTVGLRDKY cPKC
S177 GDLFNCGSLTIRAPW cPKC

JPredicted by Scansite (http://scansite.mit.edu).

ZVaIic ated sites reported in phosphosite (http//www.phosphosite.org).
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