Identification of ε PKC targets during cardiac ischemic injury

Grant Budas ${ }^{2}$, Helio Miranda Costa Junior ${ }^{3}$, Julio Cesar Batista Ferreira ${ }^{2}$, André Teixeira da Silva Ferreira ${ }^{4}$, Jonas Perales ${ }^{4}$, José Eduardo Krieger ${ }^{3}$, Daria Mochly-Rosen ${ }^{2}$, and Deborah Schechtman ${ }^{1, *}$
${ }^{1}$ Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, Brazil
${ }^{2}$ Department of Chemical and Systems Biology, Stanford University School of Medicine, São Paulo, Brazil
${ }^{3}$ Instituto do Coração, São Paulo, Brazil
${ }^{4}$ Instituto Oswaldo Cruz, Rio de Janeiro, Brazil

Abstract

Background—Activation of ε protein kinase $\mathrm{C}(\varepsilon \mathrm{PKC})$ protects hearts from ischemic injury. However, some of the mechanism(s) of ε PKC mediated cardioprotection are still unclear. Identification of ε PKC targets may aid to elucidate ε PKC-mediated cardioprotective mechanisms. Previous studies, using a combination of $\varepsilon P K C$ transgenic mice and difference in gel electrophoresis (DIGE), identified a number of proteins involved in glucose metabolism, whose expression was modified by ε PKC. These studies, were accompanied by metabolomic analysis, and suggested that increased glucose oxidation may be responsible for the cardioprotective effect of ε PKC. However, whether these ε PKC-mediated alterations were due to differences in protein expression or phosphorylation was not determined. Methods and Results-Here, we used an ε PKC-specific activator peptide, $\psi \varepsilon R A C K$, in combination with phosphoproteomics to identify ε PKC targets, and identified proteins whose phosphorylation was altered by selective activation of ε PKC most of the identified proteins were mitochondrial proteins and analysis of the mitochondrial phosphoproteome, led to the identification of 55 spots, corresponding to 37 individual proteins, which were exclusively phosphorylated, in the presence of $\psi \varepsilon$ RACK. The majority of the proteins identified were proteins involved in glucose and lipid metabolism, components of the respiratory chain as well as mitochondrial heat shock proteins.

Conclusion-In summary the protective effect of ε PKC during ischemia involves phosphorylation of several mitochondrial proteins involved in glucose, lipid metabolism and oxidative phosphorylation. Regulation of these metabolic pathways by $\varepsilon \mathrm{PKC}$ phosphorylation may lead to ε PKC-mediated cardioprotection induced by $\psi \varepsilon$ RACK.

Keywords

عPKC; ischemia; phosphorylation; mitochondria

[^0]
Introduction

We previously developed and used an $\varepsilon P K C$ isoenzyme- selective activator peptide and found that $\varepsilon P K C$ activation reduces cardiac cell death induced by ischemia ${ }^{1,2}$. To provide insight into ε PKC-mediated cytoprotective mechanisms, we used a proteomic approach combining antibodies that specifically recognize proteins phosphorylated at the PKC consensus phosphorylation site and an $\varepsilon P K C$ activator peptide ${ }^{3}$. This approach led to the identification of mitochondrial aldehyde dehydrogenase 2 (ALDH2) as an ε PKC substrate, whose phosphorylation and activation is necessary and sufficient to induce cardioprotection during an ischemic injury ${ }^{3}$. We also demonstrated that the cytoprotective mechanism of ε PKC is mediated, at least in part, by ALDH2-mediated detoxification of reactive aldehydes, such as 4-hydroxy-2-nonenal (4-HNE), that accumulate in the heart during ischemia ${ }^{3-5}$. Studies by others, using transgenic and dominant negative ε PKC mice, identified other ε PKC signaling complexes, composed of proteins involved in glucose and lipid metabolism, and proteins related to transcription/ translation, suggesting that ε PKCmediated cytoprotection involves regulation of other cellular processes ${ }^{6-8}$. A study using difference in gel eletrophoresis (DIGE) comparing hearts of mice overexpressing catalytically active and dominant negative ε PKC identified alterations in the levels of proteins involved in glucose metabolism. Metabolomic studies confirmed that during ischemia/ reperfusion glucose is metabolized faster in animals expressing constitutively active $\varepsilon P K C{ }^{9}$. However, these studies did not clarify whether the differences in the identified proteins were due to differential expression or phosphorylation levels. Overexpression of $\varepsilon \mathrm{PKC}$ lead to its mislocalization ${ }^{10}$ and a compensatory effect observed by δ PKC overexpression ${ }^{9}$. Therefore, some of the targets identified in this study could possibly have been phosphorylated by overexpressed δ PKC or mis-localized ε PKC. Nevertheless, these studies suggested that the cardioprotective mechanism of ε PKC is also due to the regulation of glucose and lipid metabolism.

In the present study we used an adult heart Langendorff coronary perfusion system, and treated isolated hearts with an $\varepsilon P K C$ specific activator peptide ($\psi \varepsilon R A C K$) prior to ischemia, to determine phosphorylation events, following selective activation of ε PKC. Proteins whose phosphorylation increased in the presence of $\psi \varepsilon$ RACK were detected in 2D Gels with a phospho-specific dye. Mass spectrometry of the phosphorylated proteins demonstrated that most of the proteins identified in total heart lysates that were differentially phosphorylated upon ε PKC activation were mitochondrial proteins. Isolation of mitochondria from $\psi \varepsilon$ RACK treated and control hearts confirmed that $\varepsilon P K C$ activation led to an increase inphosphorylation levels of proteins involved in, the electron transport chain as well as lipid metabolism.

Materials and Methods

Ex vivo rat heart model of cardiac ischemia

Animal protocols were approved by the Stanford University Institutional Animal Care and Use Committee. Rat hearts (Wistar, 250-300g), each group consisting of three rats, were perfused via the aorta at a constant flow rate of $10 \mathrm{ml} / \mathrm{min}$ with oxygenated Krebs-Henseleit buffer ($120 \mathrm{mM} \mathrm{NaCl}, 5.8 \mathrm{mM} \mathrm{KCl}, 25 \mathrm{mM} \mathrm{NaHCO} 3,1.2 \mathrm{mM} \mathrm{NaHCO} 3,1.2 \mathrm{mM} \mathrm{MgSO}$, 1.2 mM CaCl 2 , and 10 mM dextrose, pH 7.4) at $37^{\circ} \mathrm{C}$. After a 20 min . equilibration period, hearts were subjected to 35 min global, no-flow ischemia. The ε PKC-selective agonist $\psi \varepsilon$ RACK peptide [HDAPIGYD ${ }^{11}$ fused to the cell permeable Tat protein transduction domain peptide, amino acids 47-57 ${ }^{12}(1 \mathrm{mM})$ was perfused for 10 min immediately prior to ischemia onset.

Preparation of heart lysates and sub-cellular fractionation

At the end of ischemia, hearts were removed from the cannnula and immediately homogenized on ice to obtain total and mitochondrial fractions. To obtain the total lysate fraction, heart ventricles were homogenized in BufferA [7M urea, 2M tiourea, 4\% CHAPS, 5 mM magnesium acetate, $17 \mu \mathrm{~g} / \mathrm{mL}$ PMSF and phosphatase inhibitor cocktail diluted 1:300 (Sigma \# P8340 and Sigma \# P5726)]. To obtain the mitochondrial fraction, heart ventricles were homogenized in ice-cold mannitol-sucrose (MS) buffer [210 mM mannitol, 70 mM sucrose, 5 mM MOPS and 1 mM EDTA containing Protease) and phosphatase Inhibitors as above]. The homogenate was centrifuged at 700 g for 10 minutes (to pellet the cytoskeletal fraction), the resultant supernatant was filtered through gauze, and centrifuged at $10,000 \mathrm{~g}$ for 10 minutes (to pellet the mitochondrial fraction). The mitochondrial pellet was washed $3 x$ in MS buffer before the pellet was resuspended in DIGE buffer.

Two-Dimensional Gel Electrophoresis

Protein samples $(300 \mu \mathrm{~g}$ for analytic gels and $500 \mu \mathrm{~g}$ for preparative gels of total heart lysate and $250 \mu \mathrm{~g}$ for analytic/ preparative gels of mitochondrial fraction) were applied onto 3-10 linear immobilized pH gradient strips (13cm, GE, Healthcare, Life Science). Strips were rehydrated for 16 hours at room temperature. Isoelectric focusing (IEF) was performed on an IPGphor III apparatus (GE Healthcare Life Science) at 17 KVh . For the second dimension strips were incubated at room temperature, for 20 min in equilibration buffer [6 M urea, $2 \% ~(\mathrm{w} / \mathrm{v})$ SDS, 50 mM Tris-HCl pH 6.8, 30% (v/v) glycerol, 0.001% (w/v) bromophenol blue] with $2 \%(\mathrm{w} / \mathrm{v})$ DTT, followed by incubation with $4 \% ~(\mathrm{w} / \mathrm{v})$ iodoacetamide in equilibrium buffer, for 20 min . The second dimension was separated using vertical SDS-PAGE. Experiments were performed in triplicates. Phospho-proteins were detected by staining with Pro-Q Diamond (Invitrogen) per manufacturer's instructions. Gels were scanned using a Typhoon TRI scanner (Healthcare Life Science), stained with Coomassie Brilliant Blue G250 (CBB) ${ }^{13}$ and scanned using a UTA-1100 scanner and Labscan v 5.0 software (GE Healthcare Life Science).

Image analysis was performed using Image Master Software v.5.01 (GE Healthcare Life Science). For each pair of samples analyzed, individual spot volumes of replicate gels were determined in Pro-Q Diamond stained gels (phospho-proteins), followed by normalization (individual spot volume/ volume of all spots $\times 100$). Spots (of treated samples) that appeared or showed a change in spot volume of least 1.5 fold as compared to samples of hearts submitted to ischemia alone were excised from CBB-stained preparative gels and identified by mass spectrometry. Differences between experimental groups were evaluated by the Mann-Whitney t-test for proteomic analysis. A * p value < 0.05 was considered statistically significant.

"In-gel" protein digestion and MALDI-TOF/TOF MS

Digestion of selected spots was performed as previously described ${ }^{14}$. Matrix-Assisted Laser Desorption ionization Time-of-Flight/Time-of-Flight Mass Spectrometry) as analysis executed aspreviously described ${ }^{15}$. MASCOT MS/MS Ion Search
(www.matrixscience.com) software was used to blast sequences against the SwissProt and NCBInr databanks. Combined MS-MS/MS searches were conducted with parent ion mass tolerance at 50 ppm , MS/MS mass tolerance of 0.2 Da , carbamidomethylation of cysteine (fixed modification) and methionine oxidation (variable modification). According to MASCOT probability analysis only hits with significant $\mathrm{P}<0.05$ were accepted Spots from total lysates were identified at the Mass Spectrometry Facility at Stanford University (massspec.stanford.edu).

Results

Identification of phosphoproteins

Hearts were exposed to global, no-flow ischemia (35 min) in the presence or absence of $\psi \varepsilon$ RACK $(1 \mu \mathrm{M})$ applied for normoxia 10 min prior to an ischemic onset, with no wash-out, as previously described ${ }^{16}$. Both groups had a 20 min equilibration period, after which hearts were subjected to 30 min global, no-flow ischemia. To one of the groups the $\varepsilon \mathrm{PKC}$-selective agonist peptide, $\psi \varepsilon$ RACK, was perfused for $10 \mathrm{~min}(1 \mu \mathrm{M})$, immediately prior to ischemia onset and kept throughout ischemia. Total lysate of 3 hearts, from 3 independent experiments, were prepared, and run individually on 2D gels. Considering phosphorylated spots that had at least a 1.5 X increase, we compared phosphorylated spots from hearts of animals subjected to, ischemia and $\psi \varepsilon$ RACK + ischemia. The phosphorylation of 20 spots increased only in ischemic hearts treated with $\psi \varepsilon$ RACK. Of these, 18 spots were identified by mass spectrometry (Figure 1, 2 and Table 1).

Since the majority of the proteins ($\sim 70 \%$) identified were mitochondrial proteins and since a number of previous studies demonstrated that $\varepsilon P K C$ can interact with and phosphorylate mitochondrial proteins ${ }^{8,17-20}$ we set out to analyze the ε PKC phosphoproteome in isolated mitochondria.

Identification of phosphoproteins in mitochondrial fractions

Mitochondria from, ischemia and $\psi \varepsilon$ RACK + ischemia treated hearts were isolated as described in materials and methods. In a previous study we verified the purity of our mitochondrial preparation by electron microscopy and Western blot analysis of specific mitochondrial proteins ${ }^{20}$. Mitochondrial proteins were separated by 2-D gel electrophoresis and phosphoproteins stained with Pro-Q Diamond. Of the 183 spots that appeared or were increased in gels of mitochondria from hearts of animals treated with $\psi \varepsilon$ RACK + ischemia, 62 spots were visible by Coomassie Brilliant Blue and 56 spots corresponding to 38 different proteins were identified by in-gel excision followed by mass spectrometry (Figures 3, 4 and Table 2). Twenty seven proteins were mitochondrial proteins. Nine proteins were mitochondrial inner membrane proteins and one outer membrane protein. Proteins involved in fatty acid oxidation, electron transport chain (complexes I-IV), heat shock proteins as well as structural proteins were also identified. Interestingly, protein disulfide-isomerase A3 precursor, oxoglutarate (alpha-ketoglutarate) dehydrogenase (lipoamide), tubulin alpha 1A, mitochondrial aconitase, creatine kinase, mitochondrial 2, acyl-Coenzyme A dehydrogenase very long chain, 3-oxoacid CoA transferase 1, carnitine palmitoyltransferase II, electron transfer flavoprotein-ubiquinone oxidoreductase, succinate dehydrogenase complex, subunit A, flavoprotein (Fp), glyceraldehyde 3-phosphate-dehydrogenase, desmin, ubiquinolcytochrome c reductase core protein I and Coq9 protein had a change in more than one phospho-spot indicative of multiple phosphorylation sites.

Recently we showed that translocation of ε PKC to the mitochondria is mediated by HSP90, therefore the identified substrates can be direct targets of ε PKC ${ }^{20}$. Using scansite (http:// scansite.mit.edu/) we predicted PKC phosphorylation sites of the mitochondrial proteins whose phosphorylation increased upon treatment with $\psi \varepsilon$ RACK. All identified mitochondrial proteins had putative PKC phosphorylation some which matched phosphorylation sites deposited in http://www.phosphosite.org/ (Table 4).

Discussion

Several lines of evidence suggest that selective ε PKC activation reduces cardiac damage due to ischemic injury. Activation of ε PKC reduces infarct size and improves functional recovery of the heart ${ }^{1-3}$ whereas ε PKC inhibition or knockout negates the infarct-sparing
effect of ischemic preconditioning $1,3,9,21,22$. A number of mechanisms have been proposed for $\varepsilon P K C$ mediated cardioprotection, including regulation of sarcolemmal and/or mito $_{\text {ATP }}$ channels ${ }^{17,23}$, regulation of gap-junction permeance through phosphorylation of connexin 43^{24}, modulation of proteasomal activity ${ }^{16}$ or regulation of mitochondrial permeability transition pore (MPTP) opening through direct phosphorylation of MPTP components ${ }^{8}$. We recently identified mitochondrial ALDH2 as a direct $\varepsilon P K C$ substrate whose phosphorylation and activation is essential for ε PKC-mediated cardioprotection ${ }^{3}$. The cytoprotective mechanism of ALDH2 activation by $\varepsilon \mathrm{PKC}$ is due to the increased metabolism of reactive aldehydes, such as 4-Hydroxy-2-nonenal (4-HNE), which are produced as a by-product of ROS-induced lipid peroxidation, and accumulate, in the ischemic/ reperfused heart ${ }^{25}$. In the present study, we used the Pro-Q Diamond phosphospecific staining method to label proteins whose phosphorylation increased by $\psi \varepsilon$ RACK during ischemia. The majority ($\sim 70 \%$) of the ε PKC phosphoproteins identified in total heart homogenates treated with $\psi \varepsilon$ RACK during ischemia were mitochondrial proteins. The observation that $\varepsilon \mathrm{PKC}$ activation and cytoprotection results in phosphorylation of mitochondrial proteins and is consistent with other studies reporting that ε PKC-mediated cardioprotection is mediated by phosphorylation of mitochondrial proteins $1,3,9,17,18,22$.

To provide a more extensive analysis of the $\varepsilon \mathrm{PKC}$ mitochondrial phosphoproteome, we repeated the Pro-Q Diamond analysis on the cardiac mitochondrial-enriched subfraction. In the presence of $\psi \varepsilon$ RACK we saw the appearance of 182 phosphorylated spots, suggesting that ε PKC activation results in phosphorylation of a number of mitochondrial proteins. We identified novel mitochondrial ε PKC phosphoproteins involved in lipid oxidation, glycolysis, electron transport chain (including proteins from complexes I-IV), ketone body metabolism, and heat shock proteins.

We found an increase in the phosphorylation of inner-mitochondrial protein components of the respiratory chain, (complexes I, II and III); NADH dehydrogenase (ubiquinone) Fe-S protein, electron transfer flavoprotein-ubiquinone oxidoreductase, succinate dehydrogenase complex, subunit A, flavoprotein (Fp) and ubiquinol-cytochrome c reductase core protein I. Our results are in agreement with a number of biochemical and functional analyses which found $\varepsilon \mathrm{PKC}$ to interact with, and phosphorylate inner-mitochondrial proteins involved in mitochondrial respiration ${ }^{7-9,26}$. Further, the presence of $\varepsilon \mathrm{PKC}$ in a highly purified inner mitochondrial membrane preparation has already been previously demonstrated ${ }^{23}$. An increase in the activity of the electron transport chain and activation of cytochrome c oxidase subunit IV (COX) by direct ε PKC phosphorylation has also been previously demonstrated ${ }^{27}$. COX activation was suggested to be one of the cardioprotective mechanisms of $\varepsilon \mathrm{PKC}$, possibly due to increased electron flux through the electron transport chain, resulting in enhanced ATP generation and reduced ROS generation 22, 27, 28 . An ε PKC-mediated increase in cytochrome c oxidase activity was also shown to protect lens from ischemic damage ${ }^{29}$. Selective activation of ε PKC with $\psi \varepsilon$ RACK increased the phosphorylation and activity of complexes I, III and IV in synaptic mitochondria, indicating that other components of the electron transport chain are also regulated by $\varepsilon \mathrm{PKC}$ phosphorylation ${ }^{30}$, and ε PKC activation led to a decrease in mitochondrial ROS generation of neuronal mitochondria ${ }^{30}$. In agreement with a role for ε PKC in mitochondrial respiration, hearts of constitutively active $\varepsilon P K C$ transgenic mice demonstrate preserved coupling of oxidative phosphorylation, maintained mitochondrial membrane potential and decreased cytochrome c release induced by ischemic reperfusion ${ }^{31}$. The $\varepsilon P K C$ transgenic mice used have a mutation of Ala^{159} to Glu in the $\varepsilon \mathrm{PKC}$ resulting in constitutively active $\varepsilon P K C$ and increased resistance to cardiac ischemic reperfusion ${ }^{8}$. Interestingly, in constitutively active $\varepsilon P K C$ transgenic mice, mitochondrial PKC expression is preferentially increased over cytosolic expression, suggesting that the active form of PKC results in its mitochondrial translocation ${ }^{8}$. Taken together, these data suggest that phosphorylation of
intra-mitochondrial targets is crucial for ε PKC-mediated cytoprotection. In the present study we identify other components of the respiratory chain and inner mitochondrial phosphorylated proteins. However, whether there is a direct physical association between $\varepsilon \mathrm{PKC}$ and each of the inner mitochondrial $\varepsilon \mathrm{PKC}$ phosphoproteins identified here, and whether these are direct or indirect ε PKC substrates remains to be determined. Nevertheless future studies can, be directed by the results obtained here.

We did not detect ALDH2, however this may be due to the fact that different methods of detecting protein phosphorylation have different sensitivities. Some of the $\varepsilon \mathrm{PKC}$ targets identified can be indirect targets whose phosphorylation may be activated upon ALDH2 activation.

Using difference in gel eletrophoresis (DIGE) of cardiac mitochondria from transgenic mice expressing constitutively active or dominant negative ε PKC it was found that the majority of spots unique to constitutively active ε PKC corresponded to proteins involved in glucose metabolism ${ }^{9}$. These studies were combined with metabolomic studies which detected an increase in glucose metabolites in hearts expressing constitutively active $\varepsilon P K C$ subjected to ischemia/ reperfusion ${ }^{9}$. The authors proposed that activating glycolytic pathways during ischemia is a novel mechanism for the cardioprotective role of $\varepsilon \mathrm{PKC}$. In the present study we used a phospho-specific dye and $\psi \varepsilon$ RACK to investigate direct protein phosphorylation events mediated by ε PKC. Despite the different methods and methodology used to activate $\varepsilon P K C$, (constitutively active transgenic vs. dynamic activation) we identified many of the same proteins, previously described in the DIGE study, including; isocitrate dehydrogenase, oxoglutarate (alpha-ketoglutarate) dehydrogenase, pyruvate dehydrogenase, succinate dehydrogenase. [6,7,9 and Table 4]. We also identified additional ε PKC substrates involved in glycolysis, and Krebs cycle such as: aldolase A, ATP-specific succinyl-CoA synthase beta subunit, dihydrolipoamide dehydrogenase (E3), mitochondrial aconitase and aconitase 2 , confirming that $\varepsilon \mathrm{PKC}$ activation leads to phosphorylation of proteins involved in glycolysis and the Krebs cycle. Our identification of aconitase as an ε PKC target suggests that regulation of the TCA cycle is mediated by ε PKC. Aconitase has been previously identified as a PKC β II substrate in diabetic rats, however, aconitase phosphorylation by PKC β II impaired TCA cycle since there was an increase in reverse activity of aconitase (isocitrate to aconitase) ${ }^{32}$. While we identified some proteins identified previously, others were not detected in the present study, such as proteins involved in the Malate/Aspartate shuttle. This could be explained by the different methodology or the sensitivity of the methods (DIGE vs ProQ Diamond) and that we only identified the more abundant phosphorylated proteins. Alternatively, some of the proteins previously detected could have their expression and not phosphorylation status altered ${ }^{9}$. In a study identifying ε PKC complexes it has been suggested that $\varepsilon \mathrm{PKC}$ may also play a role in regulating transcription and translation processes ${ }^{6}$. Accordingly, the phosphorylation of Coq9, a key regulator of coenzyme Q synthesis ${ }^{33}$, was also regulated by $\varepsilon \mathrm{PKC}$ in the present study. Further studies should be performed to determine the specific regulation of glycolytic pathways by $\varepsilon \mathrm{PKC}$ phosphorylation and whether different isoenzymes can phosphorylate different sites.
$\varepsilon P K C$ could also have a direct or indirect role in mitochondrial protein assembly, folding, and import since we identified three mitochondrial heat shock proteins that play a role in the import and folding of proteins inside the mitochondria, and sorting and assembly machinery component 50 (SAM50), homolog of a protein involved in the assembly of outer mitochondrial membrane proteins ${ }^{34}$.

Cardioprotective signals from G protein coupled receptors (GPCRs), activated for example by bradykinin, propagating from the plasma membrane to the mitochondria through signalosomes, vesicular multimolecular complexes derived from caveoli have been
previously proposed ${ }^{35}$. In fact ε PKC was found in signalosomes and inhibition of ε PKC by ε V1-2 blocks signalosome stimulation of mitoK ATP 35. We found two proteins that are found in caveoli, Annexin A2 and PTRF also known as Cavin ${ }^{36}$, these proteins could be part of the signalosome probably co-purified with our mitochondrial fraction. PTRF phosphorylation has been shown to be important in caveoli formation ${ }^{36}$.

Conclusions

A number of mechanisms have been proposed for ε PKC-mediated cardioprotection by preconditioning. In the present study we identified several $\varepsilon P K C$ phosphoproteins which may be responsible for the cardioprotective effect of $\varepsilon P K C$. The $\varepsilon P K C$ targets identified are in line with many of the previously proposed mechanisms for $\varepsilon \mathrm{PKC}$ mediated cardioprotection. We identified components of the signalosome contributing to the idea that ε PKC-mediated cardioprotection involves transduction of GPCR signaling to the mitochondria ${ }^{35}$. We also found components of lipid and carbohydrate oxidation pathways consistent with the idea that lipid and carbohydrate metabolism is modulated by ε PKC ${ }^{9}$. Activation of the respiratory chain and increase in oxygen consumption have also been proposed to be protective mechanisms of $\varepsilon \mathrm{PKC}$ during preconditioning, to this end we identified components of Krebs cycle, and respiratory chain, whose phosphorylation was modulated by $\varepsilon P K C{ }^{27,29,30}$. The exact mechanisms by which $\varepsilon P K C$ phosphorylation leads to these different cardioprotective pathways still needs to be elucidated. The data obtained in the present study can therefore direct further studies to characterize the specific role of individual mitochondrial protein phosphorylation in ε PKC-mediated cardioprotection. Taken together, our data suggest that ε PKC-mediated phosphorylation events in the mitochondria are important for the maintenance of metabolic activity and cardioprotection during ischemic injury.

Acknowledgments

This work was supported by NIH grants AA11147 and HL52141 to D.M.-R. and in part, by an American Heart Association Western States postdoctoral fellowship to G.B.; A Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP)- Brasil grant 2005/54188-4 to D.S.; H.M.C.J. and J.C.B.F. both held a post-doctoral fellowships FAPESP 2006/52062-6 and FAPESP 2009/03143-1 respectfully.

References

1. Chen CH, Gray MO, Mochly-Rosen D. Cardioprotection from ischemia by a brief exposure to physiological levels of ethanol: Role of epsilon protein kinase c. Proc Natl Acad Sci U S A. 1999; 96:12784-12789. [PubMed: 10536000]
2. Dorn GW 2nd, Souroujon MC, Liron T, Chen CH, Gray MO, Zhou HZ, Csukai M, Wu G, Lorenz JN, Mochly-Rosen D. Sustained in vivo cardiac protection by a rationally designed peptide that causes epsilon protein kinase c translocation. Proc Natl Acad Sci U S A. 1999; 96:12798-12803. [PubMed: 10536002]
3. Chen CH, Budas GR, Churchill EN, Disatnik MH, Hurley TD, Mochly-Rosen D. Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart. Science. 2008; 321:1493-1495. [PubMed: 18787169]
4. Budas GR, Disatnik MH, Chen CH, Mochly-Rosen D. Activation of aldehyde dehydrogenase 2 (aldh2) confers cardioprotection in protein kinase c epsilon (pkcepsilon) knockout mice. J Mol Cell Cardiol. 2010; 48:757-764. [PubMed: 19913552]
5. Budas GR, H DM, D M-R. Aldehyde dehydrogenase 2 in cardiac protection: A new therapeutic target? Trends Cardiovasc Med. 2009; 19:158-164. [PubMed: 20005475]
6. Edmondson RD, Vondriska TM, Biederman KJ, Zhang J, Jones RC, Zheng Y, Allen DL, Xiu JX, Cardwell EM, Pisano MR, Ping P. Protein kinase c epsilon signaling complexes include
metabolism- and transcription/translation-related proteins: Complimentary separation techniques with $1 \mathrm{c} / \mathrm{ms} / \mathrm{ms}$. Mol Cell Proteomics. 2002; 1:421-433. [PubMed: 12169683]
7. Ping P, Zhang J, Pierce WM Jr. Bolli R. Functional proteomic analysis of protein kinase c epsilon signaling complexes in the normal heart and during cardioprotection. Circ Res. 2001; 88:59-62. [PubMed: 11139474]
8. Baines CP, Song CX, Zheng YT, Wang GW, Zhang J, Wang OL, Guo Y, Bolli R, Cardwell EM, P P. Protein kinase cepsilon interacts with and inhibits the permeability transition pore in cardiac mitochondria. Circ Res. 2003; 92:873-880. [PubMed: 12663490]
9. Mayr M, Liem D, Zhang J, Li X, Avliyakulov NK, Yang JI, Young G, Vondriska TM, Ladroue C, Madhu B, Griffiths JR, Gomes A, Xu Q, Ping P. Proteomic and metabolomic analysis of cardioprotection: Interplay between protein kinase c epsilon and delta in regulating glucose metabolism of murine hearts. J Mol Cell Cardiol. 2009; 46:268-277. [PubMed: 19027023]
10. Pass JM, Gao J, Jones WK, Wead WB, Wu X, Zhang J, Baines CP, Bolli R, Zheng YT, Joshua IG, Ping P. Enhanced pkc beta ii translocation and pkc beta ii-rack1 interactions in pkc epsiloninduced heart failure: A role for rack1. Am J Physiol Heart Circ Physiol. 2001; 281:H2500-2510. [PubMed: 11709417]
11. Chen L, Hahn H, Wu G, Chen CH, Liron T, Schechtman D, Cavallaro G, Banci L, Guo Y, Bolli R, Dorn GWn, D M-R. Opposing cardioprotective actions and parallel hypertrophic effects of delta pkc and epsilon pkc. Proc Natl Acad Sci U S A. 2001; 98:11114-11119. [PubMed: 11553773]
12. Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF. In vivo protein transduction: Delivery of a biologically active protein into the mouse. Science. 1999; 285:1569-1572. [PubMed: 10477521]
13. Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P, Zardi L, Righetti PG. Blue silver: A very sensitive colloidal coomassie g-250 staining for proteome analysis. Electrophoresis. 2004; 25:1327-1333. [PubMed: 15174055]
14. Costa-Junior HM, Garavello NM, Duarte ML, Berti DA, Glaser T, de Andrade A, Labate CA, Ferreira AT, Perales JE, Xavier-Neto J, Krieger JE, Schechtman D. Phosphoproteomics profiling suggests a role for nuclear betaiotapkc in transcription processes of undifferentiated murine embryonic stem cells. J Proteome Res. 9:6191-6206. [PubMed: 20936827]
15. Andrade HM, Murta SM, Chapeaurouge A, Perales J, Nirde P, Romanha AJ. Proteomic analysis of trypanosoma cruzi resistance to benznidazole. J Proteome Res. 2008; 7:2357-2367. [PubMed: 18435557]
16. Churchill EN, Ferreira JC, Brum PC, Szweda LI, D M-R. Ischaemic preconditioning improves proteasomal activity and increases the degradation of deltapkc during reperfusion. Cardiovasc Res. 2010; 85:385-394. [PubMed: 19820255]
17. Ohnuma Y, Miura T, Miki T, Tanno M, Kuno A, Tsuchida A, Shimamoto K. Opening of mitochondrial $k(a t p)$ channel occurs downstream of pkc-epsilon activation in the mechanism of preconditioning. Am J Physiol Heart Circ Physiol. 2002; 283:440-447.
18. Lawrence KM, Kabir AM, Bellahcene M, Davidson S, Cao XB, McCormick J, Mesquita RA, Carroll CJ, Chanalaris A, Townsend PA, Hubank M, Stephanou A, Knight RA, Marber MS, Latchman DS. Cardioprotection mediated by urocortin is dependent on pkcepsilon activation. FASEB J. 2005; 19:831-833. [PubMed: 15764590]
19. Churchill EN, Disatnik MH, D M-R. Time-dependent and ethanol-induced cardiac protection from ischemia mediated by mitochondrial translocation of varepsilonpkc and activation of aldehyde dehydrogenase 2. J Mol Cell Cardiol. 2009; 46:278-284. [PubMed: 18983847]
20. Budas GR, Churchill EN, Disatnik MH, Sun L, D M-R. Mitochondrial import of pkcepsilon is mediated by hsp90: A role in cardioprotection from ischaemia and reperfusion injury. Cardiovasc Res. 2010; 88:83-92. [PubMed: 20558438]
21. Gray MO, Karliner JS, D M-R. A selective epsilon-protein kinase c antagonist inhibits protection of cardiac myocytes from hypoxia-induced cell death. J Biol Chem. 1997; 272:30945-30951. [PubMed: 9388241]
22. Ogbi M, Johnson JA. Protein kinase cepsilon interacts with cytochrome coxidase subunit iv and enhances cytochrome c oxidase activity in neonatal cardiac myocyte preconditioning. Biochem J. 2006; 393:191-199. [PubMed: 16336199]
23. Jabůrek M, Costa AD, Burton JR, Costa CL, Garlid KD. Mitochondrial pkc epsilon and mitochondrial atp-sensitive $\mathrm{k}+$ channel copurify and coreconstitute to form a functioning signaling module in proteoliposomes. Circ Res. 2006; 99:878-883. [PubMed: 16960097]
24. Bowling N, Huang X, Sandusky GE, Fouts RL, Mintze K, Esterman M, Allen PD, Maddi R, McCall E, Vlahos CJ. Protein kinase c-alpha and -epsilon modulate connexin-43 phosphorylation in human heart. J Mol Cell Cardiol. 2001; 33:789-798. [PubMed: 11273731]
25. Eaton P, Li JM, Hearse DJ, Shattock MJ. Formation of 4-hydroxy-2-nonenal-modified proteins in ischemic rat heart. Am J Physiol. 1999; 276:H935-943. [PubMed: 10070077]
26. Agnetti G, Kane LA, Guarnieri C, Caldarera CM, JE VE. Proteomic technologies in the study of kinases: Novel tools for the investigation of pkc in the heart. Pharmacol Res. 2007:55.
27. Guo D, Nguyen T, Ogbi M, Tawfik H, Ma G, Yu Q, Caldwell RW, Johnson JA. Protein kinase cepsilon coimmunoprecipitates with cytochrome oxidase subunit iv and is associated with improved cytochrome-c oxidase activity and cardioprotection. Am J Physiol Heart Circ Physiol. 2007; 293:H2219-2230. [PubMed: 17660387]
28. Yu Q, Nguyen T, Ogbi M, Caldwell RW, Johnson JA. Differential loss of cytochrome-c oxidase subunits in ischemia-reperfusion injury: Exacerbation of coi subunit loss by pkc-epsilon inhibition. Am J Physiol Heart Circ Physiol. 2008; 294:H2637-2645. [PubMed: 18408135]
29. Barnett M, Lin D, Akoyev V, Willard L, Takemoto D. Protein kinase c epsilon activates lens mitochondrial cytochrome c oxidase subunit iv during hypoxia. Exp Eye Res. 2008; 86:226-234. [PubMed: 18070622]
30. Dave KR, DeFazio RA, Raval AP, Torraco A, Saul I, Barrientos A, Perez-Pinzon MA. Ischemic preconditioning targets the respiration of synaptic mitochondria via protein kinase c epsilon. J Neurosci. 2008; 28:4172-4182. [PubMed: 18417696]
31. McCarthy J, McLeod CJ, Minners J, Essop MF, Ping P, Sack MN. Pkcepsilon activation augments cardiac mitochondrial respiratory post-anoxic reserve--a putative mechanism in pkcepsilon cardioprotection. J Mol Cell Cardiol. 2005; 38:697-700. [PubMed: 15808847]
32. Lin G, Brownsey RW, MacLeod KM. Regulation of mitochondrial aconitase by phosphorylation in diabetic rat heart. Cell Mol Life Sci. 2009; 66:919-932. [PubMed: 19153662]
33. Hsieh EJ, Gin P, Gulmezian M, Tran UC, Saiki R, Marbois BN, Clarke CF. Saccharomyces cerevisiae coq9 polypeptide is a subunit of the mitochondrial coenzyme q biosynthetic complex. Arch Biochem Biophys. 2007; 463:19-26. [PubMed: 17391640]
34. Kozjak V, Wiedemann N, Milenkovic D, Lohaus C, Meyer HE, Guiard B, Meisinger C, Pfanner N. An essential role of sam50 in the protein sorting and assembly machinery of the mitochondrial outer membrane. J Biol Chem. 2003; 278:48520-48523. [PubMed: 14570913]
35. Garlid KD, Costa AD, Quinlan CL, Pierre SV, Dos Santos P. Cardioprotective signaling to mitochondria. J Mol Cell Cardiol. 2009; 46:858-866. [PubMed: 19118560]
36. Aboulaich N, Vainonen JP, Stralfors P, Vener AV. Vectorial proteomics reveal targeting, phosphorylation and specific fragmentation of polymerase i and transcript release factor (ptrf) at the surface of caveolae in human adipocytes. Biochem J. 2004; 383:237-248. [PubMed: 15242332]

Figure 1.
Detection of direct and indirect ε PKC substrates in total rat heart lysates. Representative 2DE gels ($n=3$ hearts of individual animals) of lysates from control hearts (A and D), hearts subjected to, ischemia alone (B and E) and Ischemia $+\psi \varepsilon R A C K ~(C$ and F) as indicated. Coommassie blue G250 stained gels (A-C) and gels stained with phospho-specific dye ProQ Diamond (D-F). Spots used to align gels are labeled (A and D).

Figure 2.
Coomassie blue G250 stained gel of total heart lysate treated with ψ عRACK+ ischemia indicating the spots identified by mass spectrometry whose phosphorylation significantly increased in hearts from rats treated with $\psi \varepsilon$ RACK + ischemia as compared to hearts subjected to ischemia alone. For the annotation of the proteins identified see Table 1.

Figure 3.
Detection of direct and indirect ε PKC substrates in isolated rat heart mitochondria.
Representative 2DE gels ($\mathrm{n}=3$ of mitochondria isolated from individual animals) of lysates from control hearts (A and D) and hearts subjected to, Ischemia (B and E) and $\psi \varepsilon R A C K+$ ischemia (C and F) as indicated. Coommassie blue G250 stained gels (A-C) and gels stained with phospho-specific dye Pro-Q Diamond (D-F). Spots used to align gels are labeled (A and D).

Figure 4.
Detection of direct and indirect ε PKC substrates in isolated rat heart mitochondria.
Representative 2DE gels ($n=3$ of mitochondria isolated from individual animals) of lysates from hearts subjected to, Ischemia and $\psi \varepsilon R A C K+$ ischemia as indicated in figure 1. Coommassie blue G250 stained gels upper panels and gels stained with phospho-specific dye Pro-Q Diamond, lower panel
Table 1 Proteins identified by mass spectrometry whose phosphorylation increased in total heart lysates of hearts subjected to $\psi \varepsilon R A C K+$ ischemia relative to ischemia alone. Identified proteins indicated in figure 2 together with Uniprot accession number, number of peptides identified, Mascot score, theoretical and experimental molecular weight (M.W.) and isoeletric point, $\% 24$ volume of ischemia where ischemia = normoxia (average of three experiments) and p-values as determined by Whitney t-test where $* \mathrm{P}<0.05$ are indicated.

$\begin{aligned} & \text { Spot } \\ & \text { No. } \end{aligned}$	Protein	$\begin{aligned} & \text { Accessio } \\ & \text { n No. } \end{aligned}$	Peptid count	Mascot prot. score	Theorical		Experimental		\% Vol	Location	P value
					MW	pI	MW	pI			
1	ATP synthase subunit beta, mitochondrial precursor	P10719	16	589	56 kDa	5.19	42kDa	5.23	2.3	mitochondria	0.02*
2	Myosin light polypeptide 3	P16409	12	495	22 kDa	5.03	23kDa	4.94	2.6	cytosol	0.02*
3	Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial precursor	Q920L2	29	693	71 kDa	6.75	65kDa	7.32	2.0	mitochondria	0.03*
4	Creatine kinase, sarcomeric mitochondrial precursor	P09605	15	309	47 kDa	8.76	45kDa	7.99	2.2	mitochondria	0.04*
5	Short-chain specific acyl-CoA dehydrogenase, mitochondrial precursor	P15651	11	280	44kDa	8.47	31kDa	9.06	2.5	mitochondria	0,08
6	Very long-chain specific acyl-CoA dehydrogenase, mitochondrial precursor	P45953	23	300	70 kDa	9.01	59 kDa	8.00	1.8	mitochondria	0.01*
7	Mitochondrial inner membrane protein	Q8CAQ8	17	225	83 kDa	6.18	75 kDa	6.35	5.1	mitochondria	0.02*
8	Propionyl-CoA carboxylase alpha chain, mitochondrial precursor	P14882	12	78	77kDa	6.33	69 kDa	6.41	5.1	mitochondria	0.02*
9	Dihydrolipoyl dehydrogenase, mitochondrial precursor	Q6P6R2	13	207	54kDa	7.96	48kDa	7.33	4.1	mitochondria	0.01*
10	ATP synthase subunit alpha, mitochondrial precursor	P15999	20	694	59 kDa	9.22	45kDa	9.14	3.0	mitochondria	0.04*
11	Creatine kinase M-type	P00564	14	568	43 kDa	6.58	39kDa	6.87	4.0	mitochondria	0.01*
12	Pyruvate dehydrogenase E1 component subunit alpha, mitochondrial precursor	P26284	13	266	43 kDa	8.49	44kDa	8.06	3.3	mitochondria	0.03*
13	Actin, alpha cardiac muscle 1	P68035	18	1030	41 kDa	5.23	40kDa	5.14	6.5	cytosol	0.04*
14	Ezrin	P31977	12	93	69 kDa	5.83	55kDa	5.80	3.5	cytosol	0.03*
15	Acetyl-coenzyme A synthetase 2-like, mitochondrial precursor	Q99NB1	10	91	74 kDa	6.51	66kDa	6.40	5.8	mitochondria	0,09
16	Pyruvate kinase isozymes M1/M2	P11980	26	790	57 kDa	6.63	46kDa	7.01	1.7	mitochondria	0.01*
17	Phosphatidylethanolamine-binding protein 1	P31044	5	326	20 kDa	5.48	19 kDa	4.65	6.0	cytosol	0.01*
18	Myosin regulatory light chain 2, ventricular/cardiac muscle isoform	P08733	15	409	18 kDa	4.86	19 kDa	4.35	2.7	cytosol	0.01*

Table 2
Proteins identified by mass spectrometry whose phosphorylation increased in mitochondria isolated from hearts subjected to $\psi \varepsilon$ RACK+ ischemia relative to ischemia alone. Identified proteins indicated in Figure 6 are shown together with Uniprot accession number, number of peptides identified and, Mascot score, theoretical and experimental molecular weight (M.W.) and 26 isoeletric point. \%volume of control (average of three experiments). * $\mathrm{P}<0.05$, as determined by Whitney t-test.

Spot No.	Protein	Accession No.	Peptide Count	Ion Score	Theorical		Experimental		Coverage	$\begin{gathered} \text { Vol } \\ (\% \text { Ischemia) } \end{gathered}$
					M.W.	pI	M.W.	pI	(\%)	
1	acetyl-CoA dehydrogenase, medium chain	Gi: 8392833	9	214	46 kDa	8.63	39 kDa	7.53	13	appeared
2	sorting and assembly machinery component 50 homolog	gi:51948454	4	57	52 kDa	6.34	59 KDa	6.51	9	appeared
3	dihydrolipoamide dehydrogenase	gi:40786469	5	102	54 kDa	7.96	61 KDa	6.43	9	appeared
4	hydroxysteroid dehydrogenase like 2 [Rattus norvegicus]	gi\|71043858	3	49	58 KDa	5.85	85 KDa	6.2	6	appeared
5	protein disulfide-isomerase A3 precursor	gi:1352384	8	116	57 kDa	5.88	66 KDa	5.92	11	appeared
6	protein disulfide-isomerase A3 precursor	gi\|1352384	10	329	57 KDa	5.88	66 KDa	5.95	23	appeared
7	aconitase 2	gi\|18079339	8	163	85 KDa	8.05	105 KDa	6.4	8	appeared
8	oxoglutarate (alpha-ketoglutarate) dehydrogenase (lipoamide)	gi\|62945278	6	171	12 KDa	6.3	174 KDa	5.83	8	appeared
9	oxoglutarate (alpha-ketoglutarate) dehydrogenase (lipoamide)	gi\|62945278	6	44	12 KDa	6.3	174 Kda	5.93	8	appeared
10	vimentin	gi\|14389299	5	147	54 KDa	5.06	67 KDa	4.85	5	appeared
11	tubulin alpha 1A	gi:38328248	4	32	50 kDa	4.94	64 KDa	5.24	10	appeared
12	tubulin alpha 1A	gi:38328248	4	36	50 kDa	4.94	64 KDa	5.31	11	appeared
13	pyruvate dehydrogenase (lipoamide) beta	gi\|56090293	5	247	39 KDa	6.2	40 KDa	5.47	20	appeared
14	branched chain keto acid dehydrogenase E1, beta polypeptide	gi\| 158749538	4	267	43 KDa	6.41	42 KDa	5.48	13	appeared
15	striated-muscle alpha tropomyosin	gi\|207349	9	95	37 KDa	4.71	38 KDa	4.07	13	appeared
19	mitochondrial aconitase	gi\|10637996	9	196	85 KDa	7.87	105 KDa	7.16	12	appeared
20	mitochondrial aconitase	gi\|10637996	9	190	85 KDa	7.87	105 KDa	7.29	12	appeared
21	mitochondrial aconitase	gi\|10637996	8	229	85 KDa	7.87	104KDa	5.23	12	appeared
22	mitochondrial aconitase	gi\|10637996	8	325	85 KDa	7.87	104 KDa	7.71	13	appeared
23	annexin A2	gi\|9845234	8	442	39 KDa	7.55	48 KDa	7.1	30	appeared
24	aldolase A	gi\|202837	4	125	40 KDa	8.3	39 KDa	8.04	22	appeared
25	creatine kinase, mitochondrial 2	gi\|38259206	6	326	47 kDa	8.64	46 KDa	7.57	21	appeared

		$\begin{array}{\|l\|l} \stackrel{\rightharpoonup}{5} \\ \stackrel{0}{2} \\ \text { ㄹ } \end{array}$						$\left\|\begin{array}{l} \stackrel{\rightharpoonup}{2} \\ \tilde{y y y} \\ \stackrel{\rightharpoonup}{c} \\ \stackrel{\rightharpoonup}{c} \end{array}\right\|$	$\left\|\begin{array}{l} \text { 敬 } \\ \stackrel{\rightharpoonup}{2} \\ \stackrel{\rightharpoonup}{2} \end{array}\right\|$	$\left\|\begin{array}{l} \text { 敬 } \\ \stackrel{\rightharpoonup}{2} \\ \stackrel{\sim}{c} \end{array}\right\|$							$\left\|\begin{array}{c} \stackrel{0}{2} \\ \tilde{y y y y} \\ \stackrel{\rightharpoonup}{2} \\ \stackrel{\rightharpoonup}{2} \end{array}\right\|$		$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \text { in } \\ & \stackrel{0}{c} \end{aligned}$	$\left\|\begin{array}{l} \dot{0} \\ \stackrel{\rightharpoonup}{0} \\ \stackrel{\rightharpoonup}{2} \\ \stackrel{\rightharpoonup}{2} \end{array}\right\|$							＂
	O	$\stackrel{\sim}{\sim}$	$\stackrel{\infty}{\sim}$	\cdots	๙	\cdots	산	\checkmark	\checkmark	\because	$\stackrel{\sim}{\sim}$	\because	\pm	in	a	\pm	c	$\stackrel{-}{-}$	$\stackrel{\sim}{-}$	\simeq	$\stackrel{\sim}{\sim}$	\％	2	त	\ldots	m	上
	Z	$\underset{\infty}{\stackrel{\rightharpoonup}{\circ}}$	$\stackrel{\text { ¢ }}{\sim}$	$\stackrel{\text { y }}{\text {－}}$	$\stackrel{\sim}{n}$	$\stackrel{n}{n}$	$\begin{aligned} & \text { n } \\ & \text { on } \end{aligned}$	$\left\lvert\, \begin{gathered} \infty \\ 0 \\ 0 \end{gathered}\right.$	ন	$\underset{\sim}{\approx}$	त̇	$\underset{\gtrless}{7}$	$\stackrel{\infty}{\underset{\sim}{n}}$	$\begin{aligned} & \pm \\ & i \\ & i \end{aligned}$	$\underset{子}{6}$	$\underset{\sim}{\gamma}$	$\left.\frac{m}{i n} \right\rvert\,$	$\underset{\sim}{\text { Nu}}$	$\underset{\sim}{\underset{\sim}{n}}$	$\underset{i}{t}$	¢ิ．	¢ ¢	\％	${ }_{0}^{\infty}$	令	$\stackrel{\text { ¢ }}{\text {－}}$	$\stackrel{\bullet}{\bullet}$
$\stackrel{\overline{\mathrm{a}}}{\underline{\mathrm{a}}}$	安		$\begin{aligned} & \stackrel{\pi}{2} \\ & \end{aligned}$	$\frac{\tilde{y}}{2}$	$\frac{\stackrel{2}{2}}{0}$	$\left.\frac{\tilde{6}}{\frac{2}{6}} \right\rvert\,$	$\begin{aligned} & \frac{\tilde{2}}{2} \\ & \frac{1}{6} \end{aligned}$	$\begin{aligned} & \stackrel{\widetilde{2}}{2} \\ & \frac{0}{6} \end{aligned}$	$\begin{aligned} & \frac{2}{2} \\ & \frac{y}{4} \end{aligned}$	$\begin{aligned} & \stackrel{2}{2} \\ & \frac{y}{4} \end{aligned}$	$\begin{aligned} & \stackrel{2}{2} \\ & \underset{y}{4} \end{aligned}$					$\frac{\tilde{2}}{\substack{6}}$	$\begin{gathered} \tilde{2} \\ \frac{2}{N} \end{gathered}$	$\frac{\tilde{2}}{\stackrel{2}{n}}$	$\frac{\tilde{2}}{2}$	$\frac{\tilde{0}}{\frac{2}{\infty}}$	$\frac{\tilde{6}}{7}$	$\stackrel{\text { Ĩ }}{\text { ה̃ }}$	$\frac{\tilde{2}}{\hat{N}}$	$\stackrel{\tilde{2}}{\hat{N}}$		$\frac{\tilde{y}}{\stackrel{2}{f}}$	告
	Z	＋	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\rightharpoonup}{\circ}$	¢	¢	त̃	$\underset{\infty}{\infty}$	$\stackrel{\square}{\mathrm{O}}$	$\stackrel{\square}{\mathrm{O}}$	$\underset{\sim}{\mathrm{C}}$	$\stackrel{\sim}{n}$	$\stackrel{\sim}{n}$	$\underset{\sim}{\text { 崔 }}$	$\stackrel{\grave{j}}{\mathrm{~g}}$	$\stackrel{\stackrel{\rightharpoonup}{i}}{i}$	$\bar{\rightharpoonup}$	$\underset{\sim}{n}$	$\stackrel{\widehat{\infty}}{\stackrel{\rightharpoonup}{i}}$	$\stackrel{8}{8}$	fí		$\underset{6}{n}$	气	$\frac{m}{\infty}$	$\stackrel{\substack{\infty \\ \infty}}{ }$	$\stackrel{\substack{\infty \\ \infty}}{+}$
F	\dot{B}	$\begin{aligned} & \text { Yू } \\ & \stackrel{y}{f} \end{aligned}$	$\frac{\stackrel{y}{2}}{\hat{N}}$	$\frac{2}{2}$		$\stackrel{\tilde{y}}{\stackrel{\rightharpoonup}{n}}$	$\begin{aligned} & \tilde{a} \\ & \frac{2}{n} \\ & \stackrel{3}{n} \end{aligned}$	$\begin{aligned} & \frac{\tilde{2}}{\mathrm{Q}} \\ & \frac{\mathrm{c}}{\mathrm{~g}} \end{aligned}$	$\begin{aligned} & \text { 2̂ } \\ & \frac{2}{4} \end{aligned}$	$\begin{aligned} & \text { Ô } \\ & \frac{2}{4} \end{aligned}$	$\begin{aligned} & \text { 2̂ } \\ & \frac{y}{4} \end{aligned}$	$\frac{\tilde{0}}{\frac{2}{6}}$	$\begin{aligned} & \frac{\pi}{6} \\ & \frac{3}{6} \end{aligned}$	$\begin{aligned} & \stackrel{\tilde{V}}{\underset{\sim}{\mathrm{I}}} \end{aligned}$	$\frac{\underset{\sim}{2}}{\frac{2}{\infty}}$	$\stackrel{\text { だ }}{\underset{\sim}{\lambda}}$	$\begin{aligned} & \text { an } \\ & 20.0 \end{aligned}$	$\stackrel{\pi}{2}$	$\begin{aligned} & \text { Ố } \\ & \text { y } \end{aligned}$	$\begin{aligned} & \text { 佱 } \\ & \stackrel{y}{\infty} \end{aligned}$	$\begin{aligned} & \stackrel{4}{e} \\ & \frac{2}{z} \end{aligned}$				$\begin{aligned} & \text { on } \\ & \text { 命 } \end{aligned}$		会
E.		年	ลิ	$\stackrel{\rightharpoonup}{\infty}$	¢	$\stackrel{\sim}{\sim}$	－	$\bar{\sim}$	ก	๙	\pm	$\stackrel{\infty}{\sim}$	극	F	$\stackrel{\sim}{c}$	$\stackrel{\sim}{2}$	－	－	$\underset{F}{\forall}$	$\stackrel{\sim}{\sim}$	ন্ন	$\stackrel{\text { g }}{ }$	¢	$\stackrel{\sim}{n}$	$\stackrel{\text { הे }}{ }$	¢	̇
		a	\wedge	in	∞	\checkmark	∞	in	∞	\checkmark	\checkmark	\bigcirc	\bigcirc	in	\wedge	a	の	∞	∞	－	\checkmark	\bigcirc	\bigcirc	\bigcirc	∞	\checkmark	m
				$\begin{aligned} & \text { n } \\ & \underset{\sim}{\infty} \\ & \stackrel{6}{\hat{6}} \\ & \frac{0}{6} \end{aligned}$	$\begin{aligned} & \frac{0}{\infty} \\ & \frac{\infty}{\frac{\infty}{2}} \\ & \frac{\infty}{\bar{b}} \end{aligned}$	$\begin{array}{\|l} \frac{0}{7} \\ \frac{\infty}{\infty} \\ \frac{\infty}{2} \\ \frac{\rightharpoonup}{\bar{b}} \end{array}$	$\left\|\begin{array}{c} \tilde{0} \\ 0 \\ \tilde{0} \\ \frac{\tilde{6}}{5} \end{array}\right\|$	$\left.\begin{gathered} \frac{5}{6} \\ \frac{n}{6} \\ \frac{n}{6} \end{gathered} \right\rvert\,$	$\left.\begin{gathered} \frac{2}{2} \\ \stackrel{0}{0} \\ \frac{0}{6} \\ \frac{0}{b} \end{gathered} \right\rvert\,$	$\left.\begin{gathered} \frac{2}{0} \\ \frac{0}{0} \\ \frac{0}{6} \\ \frac{0}{b} \end{gathered} \right\rvert\,$			$\begin{aligned} & \pm \\ & \stackrel{t}{6} \\ & 0 . \\ & \frac{n}{b} \end{aligned}$			$\begin{gathered} \stackrel{y}{c} \\ \stackrel{y}{y} \\ \underset{\sim}{n} \\ \frac{\sqrt{n}}{5} \end{gathered}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\partial} \\ & \stackrel{\rightharpoonup}{4} \\ & \frac{9}{\bar{b}} \end{aligned}$				$\begin{aligned} & \infty \\ & \stackrel{\infty}{0} \\ & \underset{\sim}{\infty} \\ & \underset{\Phi}{\bar{\omega}} \end{aligned}$			$\left.\begin{aligned} & 9 \\ & \frac{6}{6} \\ & \frac{3}{6} \\ & \frac{0}{55} \end{aligned} \right\rvert\,$		∞ ∞ $\frac{0}{6}$ $\frac{n}{60}$
霔													Electron transfer flavoprotein－ubiquinone oxidoreductase						$\stackrel{n}{\mathrm{E}_{5}}$								
哀家安		$\stackrel{\sim}{\sim}$	へ	$\stackrel{\sim}{\sim}$	ते	¢	m	m	ल	示	m	¢	¢	∞	子	\％	\％	ま	ケ	\％	子	$\stackrel{\circ}{\circ}$	\％	in	的	in	in

Table 3
Summary of the function and localization of proteins whose phosphorylation was unique or increased 1.5X (in two out of three gels, of independent samples) in mitochondria from hearts treated with $\psi \varepsilon$ RACK + ischemia relative to ischemia. The biological process, mitochondrial compartment and references to previous descriptions of protein phosphorylation or expression modulated by $\mathrm{PKC}_{\varepsilon}$ are indicated in the table.

Function	Protein	Localization	Reference
Fatty Acid oxidation	carnitine palmitoyltransferase II	mitochondrial inner membrane	
	delta(3,5)-delta(2,4)-dienoyl-CoA isomerase: precursor	mitochondrial matrix	
Glycolysis/ Gluconeogenesis	aldolase A	mitochondrial matrix	
Krebs cycle	aconitase 2	mitochondrial matrix	
	ATP-specific succinyl-CoA synthase beta subunit	mitochondrial matrix	
	isocitrate dehydrogenase 3 (NAD+) alpha	mitochondrial matrix	6,9
	dihydrolipoamide dehydrogenase (E3)	mitochondrial matrix	
	mitochondrial aconitase	mitochondrial matrix	
	oxoglutarate (alpha-ketoglutarate) dehydrogenase (lipoamide)	mitochondrial matrix	9
	pyruvate dehydrogenase (lipoamide) beta	mitochondrial matrix	9
	pyruvate dehydrogenase E1 alpha form 1 subunit	mitochondrial matrix	9
	glyceraldehyde 3-phosphate-dehydrogenase	mitochondrial matrix	6
Electron transport chain	electron transfer flavoprotein-ubiquinone oxidoreductase	mitochondrial inner membrane	
Complex I	NADH dehydrogenase (ubiquinone) Fe-S protein	mitochondrial inner membrane	
	electron transfer flavoprotein-ubiquinone oxidoreductase	mitochondrial inner membrane	
Complex II	succinate dehydrogenase complex, subunit A, flavoprotein (Fp)	mitochondrial inner membrane	6
	electron transfer flavoprotein-ubiquinone oxidoreductase	mitochondrial inner membrane	
Complex III	ubiquinol-cytochrome c reductase core protein I	mitochondrial inner membrane	
	electron transfer flavoprotein-ubiquinone oxidoreductase	mitochondrial inner membrane	
ATP Synthase	ATP synthase alpha subunit precursor	mitochondrial inner membrane	6
	ATP synthase beta subunit	mitochondrial inner membrane	6,9
Ketone body metabolism	3-oxoacid CoA transferase 1	mitochondrial matrix	
	branched chain keto acid dehydrogenase E1, beta polypeptide	mitochondrial matrix	
	vimentin	Cytosol	6,7
	tubulin alpha 1A	Cytosol	
Cytoskeletal elements	tubulin, beta, 2	Cytosol	
	desmin	Cytosol	6,7
	vinculin, isoform CRA_a	Cytosol	6,7
	heat shock protein 1, beta (HSP90)	Cytosol	
Heat Shock Protein	heat shock protein 5 (HSP70 ptn5) glucose regulated protein	Mitochondria	
	dnaK-type molecular chaperone hsp72-ps1	Mitochondria	6,7
	grp75	Mitochondria	
Caveoli	polymerase I and transcript release factor (PTRV)	Caveolin	
	annexin A2	membranes (Caveolin)	6,7

$\left.\begin{array}{|l|l|l|l|}\hline \text { Function } & \text { Protein } & \text { Localization } & \text { Reference } \\ \hline & \text { sorting and assembly machinery component 50 homolog }\end{array} \quad \begin{array}{l}\text { mitochondrion outer } \\ \text { membrane }\end{array}\right]$.

Table 4
Predicted PKC Phosphorylation sites and validated sites of the mitochondrial proteins phosphorylated upon ischemia and $\psi \varepsilon$ RACK. The phosphorylated residue is underlined.

protein	$\begin{aligned} & \text { predicted p- } \\ & \text { site } \end{aligned}$	peptide sequence ${ }^{1}$	PKC isoenzyme	Validated ${ }^{2}$
sorting and assembly machinery component 50 homolog	-			
	T160	LGRAEKVTFQFSYGT	PKC8/ち	
	S164	EKVTFQFSYGGTKETS	cPKC	
	S171	SYGTKETSYGLSFFK	PKCe/ 8	
	S189	GNFEKNFSUNLYKVT	PKCS	
	S203	TGQFPWSSLRETDRG	cPKC	
	S216	RGVSAEYSFPLCKTS	PKCS	
	T225	PLCKTSHTVKWEGVW	cPKCe/ δ	
	S243	GCLARTASFAVRKES	cPKC/ $¢$	
	S312	NKPLVLDSVFSTSLW	PKCe	
	S332	PIGDKLSSIADRFYL	PKCe	
dihydrolipoamide dehydrogenase	-			
	S10	SWSRVYCSLAKKGHF	cPKC/ $¢$	
	T165	GKNQVTATTADGSTQ	PKCe	
	S170	TATTADGSTQVIGTK	PKC δ	
	S208	VSSTGALSLKKVPEK	cPKC	
	T279	FKLNTKVTGATKKSD	cPKC/ $/$	
	T282	NTKVTGATKKSDGKI	cPKC	
	S502	REANLAASFGKPINF	cPKC	
hydroxysteroid dehydrogenase like 2	-			
	T12	TGKLAGCTVFITGAS	PKC δ	
	T53	RHPKLLGTIYTAAEE	PKC8/ $¢$	yes
	T169	FKQHCAYTIAKYGMS	cPKC/ δ / ζ	
	S237	SIFKRPKSFTGNFII	PKCs/ δ / ζ	
	S426	TFRIVKDSLSDEVVR	PKCe	
	S476	DRADVVMSMATEDFV	PKCe	
	T493	FSGKLKPTMAFMSGK	cPKC/C/ δ / ε	
protein disulfide-isomerase A3 precursor	-			
	S239	IKKFIQESIFGLCPH	PKCS	
	T228	AYTEKKMTSGKIKKF	PKCS	
	S229	YTEKKMTSGKIKKFI	cPKC	
	S239	IKKFIQESIFGLCPH	PKCठ/ $¢$	
	S303	KLNFAVASRKTFSHE	cPKC	
	T306	FAVASRKTFSHELSD	PKC δ / ε	yes

protein	$\begin{aligned} & \text { predicted p- } \\ & \text { site } \end{aligned}$	peptide sequence ${ }^{1}$	PKC isoenzyme	Validated ${ }^{2}$
	$\begin{aligned} & \text { T452 } \\ & \text { T463 } \end{aligned}$	YEVKGFPTIYFSPAN SPANKKLTPKKYEGG	PKCe cPKC	
aconitase 2	-			
	T64 T366 T415 T467 T504 S690 S770	KRLNRPLTLSEKIVY HPVADVGTVAEKEGW LKCKSQFTITPGSEQ IKKGEKNTIVTSYNR TALAIAGTLKFNPET GRAIITKSFARIHET IEWFRAGSALNRMKE	PKCS PKC 5 PKC $8 / \varepsilon$ PKCe/ ζ cPKC/ δ PKCS PKC ζ	
oxoglutarate (alpha-ketoglutarate) dehydrogenase (lipoamide)	-			
	T19 S71 S103 T106 S112 T190 T191 T262 S663 S273 S274 S405 T437 S861	RPLTASQTVKTFSQN AWLENPKSVVHKSWDI PLSLSRSSLATMAHA LSRSSLATMAHAQSL ATMAHAQSLVEAQPN DKVFHLPTIIFIGGQ KVFHLPIMFIGGQE LARLVRSTRFEEFLQ AEYMAFGSLLKEGIH EFLQRKWSSEKRFGL FLQRKWSSEKRFGLE TEGKKVMSILLHGDA PSYTTHGTVHVVVNN LIVFTPKSLLLRHPEA	cPKC/e/d cPKC PKCe $/ \chi^{/ \delta}$ PKC δ PKC δ PKC δ PKC δ PKCe PKC ζ PKCS cPKC/ δ PKC ζ PKC δ PKC ζ	yes
aldolase A	-			
	$\begin{gathered} \text { S39 } \\ \text { S46 } \\ \text { T227 } \\ \text { S309 } \\ \text { S336 } \end{gathered}$	AADESTGSIAKRLQS SIAKRLQSIGTENTE HHVYLEGTLLKPNMV YGRALQASALKAWGG IKRALANSLACQGKY	PKC δ / ζ PKCe PKC cPKC δ cPKC δ	yes yes
acyl-Coenzyme A dehydrogenase, very long chain	-			
	$\begin{gathered} \text { S60 } \\ \text { S72 } \\ \text { T194 } \\ \text { S227 } \end{gathered}$	ETLSSDASTREKPAR PARAESKSFAVGMFK KGILLYGTKAQKEKY SSGSDVASIRSSAVP	cPKC/ع PKCS cPKC δ	

protein	predicted p- site	peptide sequence ${ }^{\text {l }}$	$\underset{\text { isoenzyme }}{\text { PKC }}$	Validated ${ }^{2}$
	S287	TAFVVERSFGGVTHG	PKC8	
	T347	GRFGMAATLAGTMKA	PKCS	
	S423	AISKIFGSEAAWKVt	PKCS	
	S517	RRRTGIGSGLSLSGI	PKCS	
3-oxoacid CoA transferase 1	-			
	S16	SGlrlcasarnsrga	cPKC	
	S35	CACYFSVSTRHHTKF	cPKC	
	T58	kDipngatluvgafg	PKC8	
	T140	VELTPQGILAERIRA	PKCS	
	T163	YTSTGYGILVQEGGS	PKCe	
	S179	IKYNKDGSVAIASKP	PKCe//̧/8	
	S253	Eeivdigsfapedih	PKCe	
	S283	EKRIERLSLRKEGEG	cPKC/e/8/5	
	T397	RGGHVNLTMLGAMQV	PKCS	
	T440	SKTKVvvtmehsakg	cPKC/e	
	T457	hKimekctlpltgke	cPKC 8	
ATP synthase alpha subunit precursor	-			
	T102	itpetestisvvgli	PKC δ	
pyruvate dehydrogenase E1 alpha form 1 subunit	-			
	T35	RNFANDATFEIKKCD	PKCS	
	T70	KYYRMMOTVRRMELK	cPKC/e	
	T124	AYRAHGFIFNRGHAV	PKC δ	
	T139	RailaeltgrrgGca	PKC8	
	S152	CAKGKGGSMHMYAKN	PKC\%/5	
	T266	ilcvreatkfaatyc	PKC 8	
	S293	TYRYHGHSMSDPGVS	PKCe	yes
carnitine palmitoyltransferase II	-			
	S15	RAWPRCPSLLVLGAPS	PKC8	
	T60	Pipkledtmkrylna	cPKC	
	T156	ltratnlivsavrfl	PKC8	
	5320	ETLKKVDSSAVFCLCL	PKCS	
	5411	AATNSSASVETLSFN	PKC 8	
	5416	SASVETLSFNLSGAL	PKC 8	
	T428	GALKAGITAAKEKFD	PKCS	
	T437	AKEKFDTTVKTLSID	PKCe/s/x	
	S462	FLKKKQLSPDAVAQL	PKC8	
	T491	ATYESCSTAAFKHGR	PKCS	

protein	$\begin{aligned} & \text { predicted p- } \\ & \text { site } \end{aligned}$	peptide sequence ${ }^{1}$	PKC isoenzyme	Validated ${ }^{2}$
	S510	LRLSMQKSMQSHAAV	PKC8/ち	
	S522	AAVFRVGSVLQEGCE	PKC $6 / \zeta$	yes
	T618	AEHWRKHTLSYVDTK	PKCe/ $/$ / ζ	
	S620	HWRKHTLS ${ }^{\text {S }}$ YDTKTG	cPKC/ $¢$	
	T630	DTKTGKVILDPRPVI	PKCe	
	T640	YRPVIDKTLNEADCA	PKCe	
Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase: Precursor	-			
	S30	RQLYFNVSLRSLSSS	cPKC/S	
	T153	SRYQKTFTVIEKCPK	PKCe/ $¢$	
	T225	RSLVNELTFTARKMM	PKC δ	
glyceraldehyde 3-phosphate-dehydrogenase	-			
	T57	THGKFNGTVKAENGK	cPKC/ ε	yes
	T185	AITATQKTVDGPSGK	PKC δ	yes
	T292	NSNSHSSTFDAGAGI	PKCe/ δ	
ubiquinol-cytochrome c reductase core protein I	-			
	S107	TKSSKESSEARKGFS	PKCe/ 8	
	T120	FSYLVTAI IIVGVAY	PKC δ	
	T122	YLVTAIIIVGVAYAA	PKCe	
	T180	PLFVRHRTKKEIDQE	cPKC	
pyruvate dehydrogenase (lipoamide) alpha	-			
	T35	RNFANDATFEIKKCD	PKCS	
	T70	KYYRMMQTVRRMELK	cPKC/e	
	T124	AYRAHGFTFNRGHAV	PKC δ	
	T139	RAILAELTGRRGGCA	PKC δ	
	S152	CAKGKGGSMHMYAKN	PKC $\delta /$ ¢	
	T266	ILCVREATKFAAAYC	PKC 8	
	S293	TYRYHGHSMSDPGVS	PKCe	
pyruvate dehydrogenase (lipoamide) beta	-			
	S16	RGPLRQASGLLKRRF	PKCS	
	T112	RPICEFMTFNFSMQA	PKCS	
	T235	AKIERQGTHITVVAH	PKCS	
	S282	DIEAIEASVMKTNHL	PKC δ	
ATP synthase beta subunit	-			
	S51	RDYAAQSSAAPKAGT	PKCS	
	S231	AKAHGGYSVFAGVGE	PKCS	

protein	$\begin{aligned} & \text { predicted p- } \\ & \text { site } \end{aligned}$	peptide sequence ${ }^{1}$	PKC isoenzyme	Validated ${ }^{2}$
	$\begin{aligned} & \mathrm{T} 288 \\ & \mathrm{~S} 353 \end{aligned}$	RVALTGLTVAEYFRD IIIIKKGSITSVQAI	PKC ζ PKC $\delta / \varepsilon / \chi$	
Branched chain keto acid dehydrogenase E1, beta polypeptide	-			
	$\begin{aligned} & \text { T105 } \\ & \text { S177 } \end{aligned}$	FGGVFRCTVGLRDKY GDLFNCGSLTIRAPW	cPKC cPKC	

[^1]
[^0]: *Corresponding author: deborah@iq.usp.br.
 Competing interests: D.M.R. is the founder of KAI Pharmaceuticals Inc, a company that aims to bring PKC regulators to the clinic. None of the research performed in her laboratory is in collaboration with or supported by the company. The other authors declare that they have no competing interests.
 Authors' contributions: G.B., H.M.C.J., A.T.D.F., J.P. and J.C.B.F. performed all experiments. D.S. and D.M-R designed the study. D.S. directed the study. D.S. and J.E.K. wrote the manuscript.

[^1]: ${ }^{1}$ Predicted by Scansite (http://scansite.mit.edu).
 ${ }^{2}$ Valic ated sites reported in phosphosite (http//www.phosphosite.org).

