
Hindawi Publishing Corporation
Journal of Parasitology Research
Volume 2012, Article ID 574020, 9 pages
doi:10.1155/2012/574020

Review Article

Thymus Atrophy and Double-Positive Escape Are Common
Features in Infectious Diseases

Juliana de Meis,1 Désio Aurélio Farias-de-Oliveira,1 Pedro H. Nunes Panzenhagen,1
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The thymus is a primary lymphoid organ in which bone marrow-derived T-cell precursors undergo differentiation, leading to
migration of positively selected thymocytes to the T-cell-dependent areas of secondary lymphoid organs. This organ can undergo
atrophy, caused by several endogenous and exogenous factors such as ageing, hormone fluctuations, and infectious agents. This
paper will focus on emerging data on the thymic atrophy caused by infectious agents. We present data on the dynamics of thymus
lymphocytes during acute Trypanosoma cruzi infection, showing that the resulting thymus atrophy comprises the abnormal release
of thymic-derived T cells and may have an impact on host immune response.

1. Introduction

The thymus is a primary lymphoid organ in which bone
marrow-derived T-cell precursors undergo differentiation,
leading to migration of positively selected thymocytes to
the T-cell-dependent areas of secondary lymphoid organs
[2]. Interactions between thymocytes and specialized thymic
microenvironmental cells (thymic epithelial cells, macropha-
ges, dendritic cells, and fibroblasts) support and drive T-
cell differentiation from bone marrow-derived precursors, by
means of a series of interactions including receptor/corecep-
tor interactions, cytokines, chemokines, and hormones [3–
7], as illustrated in Figure 1.

Thymopoiesis starts at the time that a T-cell precursor
enters the thymus and interacts with local microenviron-
mental cells, which ultimately lead to their proliferation and
further differentiation to the T-cell lineage. Various types of
interactions take place, including those mediated by the class
I and class II major histocompatibility complexes (MHC)
expressed by microenvironmental cells, extracellular matrix
proteins (ECM) such as laminin, fibronectin, and collagen,
chemokines (as CCL25, CXCL12, CCL21), lectins such
as galectin-3, various typical cytokines (IL-1, IL-2, IL-3,

IL-6, IL-7, IL-8, IFN-gamma, and others), sphingosin-1-
phosphate (S1P1), and hormones (thymulin, thymopoietin,
thymosin-a1) [2, 5, 8–13]. T-cell differentiation depends on
T-cell receptor (TCR) gene rearrangement and membrane
interaction with MHC molecules.

The mechanisms by which progenitors home to the thy-
mus have been suggested to be similar to those used by leuko-
cytes to enter lymph nodes (selectins, chemokines receptors,
and integrins) [1, 14, 15]. As soon as these thymic settling
progenitors (TSP) enter the thymus close to the cortico-
medullary junction, they generate early T-cell progenitors
(ETP) or double-negative DN1 thymocytes, known to be
CD117/c-KIT+, CD44+ CD25− [16]. ETP or DN1 thymo-
cytes evolve to DN2 and DN3 thymocytes that migrate to the
subcapsular zone of the thymic lobules, where they rearrange
the genes encoding the TCR beta chain, express pre-TCR
receptor, and proliferate.

At the DN3 stage, the CXCL12/CXCR4 interaction con-
tributes thymocyte proliferation and differentiation towards
the DN4 and subsequently CD4+CD8+ (DP) stage [1, 17].
Double-negative thymocytes, TCR−CD4−CD8−, represent
5% of total thymocytes. Maturation progresses with the
definite acquisition of TCR, CD4, and CD8 expression
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Figure 1: Intrathymic differentiation of T cells. Lymphocyte differentiation initiates when T-cell precursors enter the thymus through
postcapillary venules located at corticomedullary junction. After entering the organ, cells interact with the thymic microenvironment
(thymic epithelial cells, macrophages, dendritic cells, and fibroblasts), which ultimately lead to their proliferation and TCR rearrangement.
Interactions between thymocytes and specialized thymic microenvironmental cells support and direct T cell differentiation by means of a
series of interactions including receptor/coreceptor interactions (MHC-TCR, Integrin/ECM Proteins), cytokines (IL-1, IL-2, IL-3, IL-6, IL-7,
IL-8, IFN-gamma), chemokines (as CCL25, CXCL12, CCL21), and hormones, with corresponding receptors. At the subcapsular zone, these
thymocytes undergo TCR beta chain rearrangement and selection. Double-positive thymocytes migrate through the cortex and initiate TCR
testing (positive selection). Positively selected thymocytes, located at the medulla, are screened for self-reactivity through negative selection.
Residence in the medulla is followed by emigration, which is regulated by sphingosine-1-phosphate and its receptor (S1P1). Adapted from
[1].
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generating DP; double cells, which constitute 75–80% of the
whole thymocyte population. Thymocytes that do not
undergo a productive TCR gene rearrangement die by apop-
tosis, whereas those expressing productive TCRs interact
with peptides presented by molecules of the major histo-
compatibility complex (MHC), expressed on microenviron-
mental cells. The result of this interaction determines the fate
of thymocytes [2, 9, 18]. The positively selected thymocytes
will escape from apoptosis and become mature CD4+ or
CD8+ single-positive (SP) T cells (Figure 1). This is a highly
rigorous process, and only a small proportion of the double-
positive population survives [19]. Positive selection also
results in lineage commitment so that the lymphocytes can
be committed to either the CD4 or CD8 single-positive
phenotype, depending on the class of MHC molecule with
which the TCR interacts.

Intrathymic negative selection is essential to establish
self-tolerance in the T-cell repertoire, deleting high-avidity
TCR signaling thymocytes reacting to self-peptides presented
by microenvironmental cells [2, 11, 18, 20].

Interestingly, along with CD4+ T-cell differentiation, two
distinct groups of cells, with opposite roles, have been report-
ed: the classical CD4+ T helper cells (cells that are able to
trigger and/or enhance an immune response in the periph-
ery) and regulatory CD4+CD25+FOXP3+ T cells, which are
able to impair a given immune response [9, 21].

The data summarized above clearly demonstrate that the
thymus is vital for the homeostatic maintenance of periph-
eral immune system, maturing both effector and regulatory
T cells (Figure 1).

It has been well documented that the thymus undergoes
an age-related atrophy [22]. Under normal circumstances,
the decline in thymic cellularity in healthy subjects promotes
minimal consequence. Nevertheless, over time, reduced
efficacy of the immune system with age increases the rise of
opportunistic infections, autoimmunity, and cancer [22–24].

In this paper, we present emerging data regarding accel-
erated thymus atrophy caused by infected agents and possible
impact of this thymic atrophy to the host immune response.
Moreover, we show that thymic-derived T cells are involved
in the dynamics of lymphocyte populations in secondary
lymphoid organs during acute Trypanosoma cruzi infection.

2. Parasite Infection Promotes Thymic Atrophy
with CD4+CD8+ Thymocyte Depletion

As mentioned above, the thymus senses several exogenous
agents, responding with atrophy, promoted by viruses (HIV,
rabies virus), parasites (Trypanosoma cruzi, Plasmodium
berghei, Schistosoma mansoni, and Trichinella spiralis), and
fungi (Paracoccidioides brasiliensis and Histoplasma capsula-
tum) [9, 22, 25–40]. The mechanisms involved in the thymic
atrophy in infectious disease are not completely elucidated
and may vary. Nevertheless, common histological features
occur, including decrease of cortical thymocytes and loss of
clear-cut distinction in the corticomedullary region [9, 38,
41–47]. At least in some cases, such atrophy may be transient:
biphasic reactions of the thymic cortex, characterized by
initial atrophy and further restoration, were reported in
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Figure 2: Possible mechanisms involved in thymic atrophy. I.
Decreased number of precursor cells migrating into the thymus, II.
Lower capacity in thymocyte proliferation during T-cell differentia-
tion, III. Increased thymocyte death, and/or IV. Exit of immature T
cells to peripheral tissues.

experimental infections by Histoplasma capsulatum and
Toxoplasma gondii [48, 49].

Thymic atrophy in infectious disease may reflect distinct
nonmutually excluding events: decreased number of precur-
sor cell entry into the thymus, lower capacity in thymocyte
proliferation, increased thymocyte death, and/or increased
exit of thymocytes to peripheral lymphoid tissues (Figure 2).

Although the migratory capacity of T-cell precursors to
colonize the thymus in infectious disease remains unknown,
data from the literature suggest that parasite-induced thymus
atrophy comprises changes in involvement of proliferation,
death, and exit of thymocytes.

3. Impaired Thymocyte Proliferation in
T. cruzi -Infected Mice

It has been shown that mitogenic responses of thymocytes
from T. cruzi acutely infected mice are reduced due to
decrease in interleukin (IL)-2 production, which in turn is
associated with high levels of IL-10 and interferon-γ [50].
It has also been suggested that changes in thymocyte subset
proportions induced by T. spiralis infection are reflected in
a reduced capacity of thymocytes to respond to the T-cell
mitogen concanavalin A [45]. In contrast, thymocytes from
S. mansoni-infected mice apparently exhibit similar con-
canavalin A-induced proliferative response, as compared to
controls [38]. Conjointly, these data suggest that some (but
not all) parasites induce decrease in the ability of thymocytes
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Box 1. Immunoneuroendocrine interactions involving cytokines and Hypothalamus-Pituitary-Axis in infectious
diseases. Infectious agents lead to activation of innate and adaptive immune response. Proinflammatory
cytokines (IL-1, IL-6, and TNF-α) are key mediators of immune response and stimulate the
Hypothalamus-Pituitary-Adrenal (HPA) axis. This HPA activation leads to increasing corticotrophin-
releasing hormone (CRH) by the hypothalamus and further production of Adrenocorticotropic
hormone (ACTH) by the pituitary gland. ACTH stimulation promotes adrenal production of steroids
as glucocorticoids (GCs), dehydroepiandrosterone (DHEA), and its sulphate ester (DHE). GCs trigger
apoptotic signals to T- and B-cell precursors as well as immature T cells [51–55]. In murine
Chagas disease, there is an imbalance of the HPA axis, with increase in GCs levels, in the absence
of rise in CRH and ACTH [56, 57].

Box 1

to proliferate, which in turn account for the resulting thymic
atrophy.

4. Thymocyte Apoptosis Is a Common Feature
in Acute Parasite Infections

In the vast majority of infectious diseases coursing with
thymic atrophy, the major biological event associated with
thymocyte loss is cell death by apoptosis, as seem, for ex-
ample, in experimental models of Trypanosoma cruzi and
Plasmodium berghei infection [9]. Although CD4+CD8+

thymocytes are the main target population in infection, other
subsets as DN and SP cells also depleted in infected thymus
[30, 32, 42, 63, 64].

Glucocorticoid hormones are strong candidates to pro-
mote thymic atrophy and thymocyte death in parasitic infec-
tions. Serum glucocorticoid levels are upregulated in acute
infections and promote DP thymocyte apoptosis through
caspase-8 and caspase-9 activation [9, 56, 57, 65, 66] (Box 1).
Such rise in serum glucocorticoids has been reported in
experimental parasitic diseases such as malaria, American
tripanosomiases or Chagas disease, African trypanosomiases
or sleeping sickness, toxoplasmosis, leishmaniasis, and schis-
tosomiasis [51, 56, 67–72]. In experimental acute T. cruzi
infection, thymic atrophy and thymocyte depletion have
been associated with both TNF and glucocorticoid serum
levels [44, 65, 73].

Nevertheless, at least in T. cruzi infection, various and dif-
ferent biological mechanisms seem to be involved. T. cruzi-
derived transsialidase, as well as host-derived galectin-3,
extracellular ATP, and androgens have been pointed out as
candidate molecules to enhance thymocyte death [44, 64, 69,
74–77]. Conversely, typical cytotoxic molecules such as Fas
and perforin are not involved in thymus atrophy in T. cruzi
infection [78].

5. Acute Infection Can Promote Abnormal
Escape of Immature Thymocytes to
the Periphery

T-lymphocyte migration is controlled by several molecular
ligand/receptor interactions, including those involving ECM
proteins, chemokines, and lectins [12, 13, 79–82].

In the thymus of mice acutely infected by T. cruzi or
P. berghei alterations in expression of ECM proteins, che-
mokines, and/or galectin-3 have been described [5, 63, 64,
79, 83], which is in keeping with the abnormal appearance
of thymus-derived immature DP lymphocytes in peripheral
lymphoid organs and blood from infected hosts. These
findings suggest that the premature scape of immature cells
from the organ also contributes to the establishment of the
thymic atrophy [38, 42, 84, 85]. Accordingly, it has been
shown that thymocytes from T. cruzi acutely infected mice
exhibited increased migratory responses to fibronectin and
that abnormally high numbers of DP T cells migrate from
the thymus to peripheral lymphoid organs. [42, 64, 83–86]
(Box 2). Studies performed in experimental P. berghei infec-
tion have also demonstrated increased expression of ECM
proteins, CXCL12 chemokine production, and enhanced
migratory response of thymocytes from infected mice, when
compared to controls [87].

6. Thymic Changes May Impact on the Immune
Response of Infected Animals

Acute T. cruzi infection in mice leads to strong activation
of innate and adaptive immune responses. Splenomegaly
and expansion in subcutaneous lymph nodes (SCLN) were
reported, mediated by persistent T- and B-cell polyclonal
activation [63, 88–91]. Conversely, atrophy in thymus and
mesenteric lymph nodes (MLN) has been observed along
with infection [9, 43, 92]. We have previously demonstrated
that MLN atrophy in T. cruzi infection mice was associated
with massive lymphocyte apoptosis, mediated by TNF, Fas,
and caspase-9 [63, 88, 92]. The role of thymus-derived
T cells in secondary lymphoid organ dynamics remains
unclear. In order to analyze the role of the thymus upon
regional immune response in secondary lymphoid organs
from acute T. cruzi infected mice, thymectomized male
BALB/c mice or sham-operated counterparts were infected
with 100 blood-derived trypomastigotes from Tulahuén
strain of T. cruzi. In the peak of parasitemia (18–21 d.p.i),
mice were killed, and subcutaneous, mesenteric lymph nodes
as well as spleen were analyzed. As demonstrated in Figure 3,
thymectomy in noninfected mice does not alter lymphocyte
counts in the spleen, SCLN, and MLN. However, absence
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Box 2. Thymic atrophy and negative selection in experimental acute Chagas disease.
It is largely established that interactions between TEC and thymocytes control the development of
the thymic microenvironment and T-cell development. Furthermore, many tissue-specific self-
proteins are known to be synthesized by medullary thymic epithelial cells (mTEC) that express
Aire. For this reason, Aire-expressing mTEC have a central role in the deletion of self-reactive
thymocytes during the process of negative selection [58–61]. In T. cruzi infection we showed that
the expression of Aire and highly selective tissue restricted antigens was readily detectable in
whole thymus by real-time PCR analysis from infected mice, suggesting an expression of peripheral
antigens which would be sufficient to modulate the tolerance induction by the negative selection
process [62].
During the acute phase of infection, as the thymic atrophy becomes evident, there is an increase
in numbers of apoptotic intrathymic DP cells, compared to their respective normal counterparts.
Although this phenomenon may be a consequence of the changes observed in the organ, our data
show that along the DP depletion there is sustained expression of Bim, a proapoptotic factor
essential for thymocyte negative selection. Further analysis, by using an OTII TCR transgenic
system, revealed that the administration of the cognate OVA peptide in the acutely infected mice
undergoing thymic atrophy can induce TCR-stimulation-induced apoptosis of semimature
thymocytes. These data point out that negative selection operates normally during infection-
promoted thymic atrophy, since the DP cells can be negatively selected in the infected thymus by
antigen-induced depletion [62].

Box 2
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Figure 3: Thymectomy modulates splenic cell numbers during acute Trypanosoma cruzi infection. Mice were thymectomized and, six days
later, were infected intraperitoneally by the Tulahuén strain of T. cruzi. Animals were killed at 19 days postinfection, and subcutaneous
(SCLN), mesenteric (MLN), lymph nodes and spleen cell numbers were evaluated. (a) Representative data demonstrating TCR expression in
CD4 and CD8 T cells in SCLN, MLN, and spleen, analyzed by flow cytometry. (b) Data show fold change of 6–8 animals/group where (white
rectangle) represents sham-operated control, (black rectangle) sham-operated infected, (light grey rectangle) thymectomized control, and
(dark grey rectangle) thymectomized infected mice. Results were representative of three different experiments and were expressed as mean ±
standard deviation, ns: not significant, ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001, after comparison by One Way ANOVA.

of thymic-derived T cells during acute infection increased
the number of splenocytes (Figure 3). In this respect, it
has been demonstrated that thymus-derived γδTCR+ T cells
removed from the spleen exhibit suppressor activity for
T lymphocytes [93]. Moreover, as showed in thymectomized
T. cruzi chronically infected animals, thymic removal may act

by downregulating immunoregulatory mechanisms, leading
to an exacerbation of autoimmune reactions believed to be
involved in the generation of myocardial damage [94].

Interestingly, no changes were observed in SCLN cell
expansion and MLN atrophy between infected sham and thy-
mectomized mice, suggesting that suppressor T cells migrate
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preferentially to the spleen (Figure 3). All together, these data
indicates that thymic-derived T cells can exert immunoregu-
latory in the spleen during acute T. cruzi infection.

7. Conclusion

Several pathogens, including T. cruzi, cause thymic atrophy.
Although the precise mechanisms underlying this phenom-
enon are not completely elucidated, most likely it is linked
to a particular pathogen-host relationship. Recently, we ad-
dressed whether the changes of the thymic microenviron-
ment promoted by an infectious pathogen would also lead
to an altered intrathymic negative selection of the T-cell
repertoire. By using a T. cruzi acute infection model, we have
seen that, despite the alterations observed in the cortex and
medullary compartments undergoing a severe atrophy dur-
ing the acute phase, the changes promoted by the infection in
the thymic architecture do not affect the negative selection.

Although the intrathymic checkpoints necessary to avoid
the maturation of T cells expressing potentially autoreactive
“forbidden” T-cell receptors are present in the acute phase of
murine Chagas disease, circulating CD4+CD8+ T cells have
been reported in humans as well as in animals such as mice,
chicken, swine, and monkeys [9, 62, 85]. The existence of
this unconventional and rare lymphocyte population in the
periphery was explained as a premature release of DP cells
from the thymus into the periphery, where their maturation
into functionally competent single-positive cells continues.

Most importantly, there is considerable evidence of an
increased frequency of peripheral CD4+CD8+ T cells not
only during acute T. cruzi infection but also in viral infec-
tions. For example, in human immunodeficiency virus or
Epstein-Barr virus infections, the percentage of DP cells can
increase to 20% of all circulating lymphocytes [95–97]. This
fluctuation is also present in the secondary lymph nodes
as we demonstrated in the experimental model of Chagas
disease, in which DP-cell subset increases up to 16 times
in subcutaneous lymph nodes [83, 85]. During the course
of infection, these peripheral DP cells acquire an activated
phenotype similar to what is described for activated and
memory single-positive T cells with high IFN-γ production,
CD44+CD69+ expression, and cytotoxic activity [62].

Furthermore, similar to previous studies showing high
cytotoxic activity and effector memory phenotype of extra-
thymic DP cells in cynomolgus monkeys and in a chimpanzee
experimental infection with hepatitis C virus [95], our results
indicate that the DP cells purified from peripheral lymphoid
tissues of chagasic animals show cytotoxic activity as com-
pared to naı̈ve single-positive CD4+ or CD8+ T cells.

Most likely, the presence of peripheral, mature, and
activated DP lymphocytes challenges the perception of the
T-cell populations involved in adaptive immune responses
during the infection. The presence of peripheral activated
DP cells with potentially autoreactive TCR may contribute
to the immunopathological events possible related to several
pathogen infections. In the Chagas disease model, we have
demonstrated that increased percentages of peripheral blood
subset of DP cells exhibiting an activated HLA-DR+ phe-
notype are associated with severe cardiac forms of human

chronic Chagas disease [62]. The role of these HLA-DR+

DP T cells in myocardial damage and host pathologies is
unknown. However, correlations between the changes in the
numbers of DP T-cell subsets and the extent of inflammatory
lesions may represent a clinical marker of disease progression
in parasitic infections and may help the design of novel
therapeutic approaches for controlling infectious diseases.
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AIRE: Autoimmune regulator gene
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TEC: Thymic epithelial cells.
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