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Abstract

Background: Low nitric oxide (NO) bioavailability plays a role in the pathogenesis of human as well as of experimental
cerebral malaria (ECM) caused by Plasmodium berghei ANKA (PbA). ECM is partially prevented by administration of the NO-
donor dipropylenetriamine NONOate (DPTA-NO) at high concentration (1 mg/mouse), which also induces major side effects
such as a sharp drop in blood pressure. We asked whether alternative strategies to improve NO bioavailability with minor
side effects would also be effective in preventing ECM.

Methodology/Principal Findings: Mice were infected with PbA and prophylactically treated twice a day with bolus
injections of L-arginine, Nv-hydroxy-nor-Arginine (nor-NOHA), tetrahydrobiopterin (BH4), separately or combined, sodium
nitrite, sildenafil or sildenafil plus DPTA-NO starting on day 0 of infection. L-arginine and BH4 supplementation, with or
without arginase inhibition by nor-NOHA, increased plasma nitrite levels but failed to protect against ECM development.
Accordingly, prophylactic treatment with continuous delivery of L-arginine using osmotic pumps also did not improve
survival. Similar outcomes were observed with sodium nitrite sildenafil (aimed at inhibiting phosphodiesterase-5) or with
DPTA-NO. However, sildenafil (0.1 mg/mouse) in combination with a lower dose (0.1 mg/mouse) of DPTA-NO decreased
ECM incidence (8267.4% mortality in the saline group and 38610.6% in the treated group; p,0.05). The combined
prophylactic therapy did not aggravate anemia, had delayed effects in systolic, diastolic and mean arterial blood pressure
and induced lower effects in pulse pressure when compared to DPTA-NO 1 mg/mouse.

Conclusions/Significance: These data show that sildenafil lowers the amount of NO-donor needed to prevent ECM,
resulting also in lesser side effects. Prophylactic L-arginine when given in bolus or continuous delivery and bolus BH4
supplementation, with or without arginase inhibition, were able to increase NO bioavailability in PbA-infected mice but
failed to decrease ECM incidence in the doses and protocol used.
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Introduction

Human cerebral malaria (HCM) is a life-threatening condition

and remains a serious public health problem in a number of

tropical and sub-tropical countries [1]. Despite anti-malarial

treatment, the disease has a significant mortality rate of 18–30%

and a significant proportion of children who survive are left with

cognitive disability (,25%) and neurologic deficits (1.1–4.4%), for

which there is often very little long-term support or treatment

[2,3,4,5,6].

The murine model of cerebral malaria induced by Plasmodium

berghei ANKA (PbA) in susceptible mouse strains is considered to

present a number of similarities with HCM in terms of

physiopathogenesis. It is also thought to present a number of

differences and therefore there is no consensus to its relevance to

HCM [7,8,9,10,11,12,13]. However, low nitric oxide (NO)

bioavailability is believed to play a significant role in both HCM

and murine or experimental cerebral malaria (ECM). ECM is

associated with a microvascular dysfunction in the brain char-

acterized by vasoconstriction, vascular occlusion, endothelial

activation with intravascular inflammation, microhemorrhages

and eventually vascular collapse [14,15]. Endothelial dysfunction

is at least in part explained by a state of low NO bioavailability in

PbA-infected mice that has been argued to result mainly from the

low plasma levels of L-arginine [16], the substrate used by the NO

synthases (NOS) to generate NO plus citrulline [17,18], as well as

from the NO-scavenging effect of cell-free hemoglobin due to

parasite-induced hemolysis [16]. Similarly, patients with severe

malaria, including HCM, show low levels of exhaled NO,

endothelial dysfunction [19], reduced endothelial NO synthase
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expression [20], hypoargininemia [19,21], and increased levels of

acellular plasma hemoglobin [22].

Prophylactic treatment of PbA-infected mice with the NO-

donor dipropylenetriamine NONOate (DPTA-NO) can partially

prevent ECM development [15,16]. However, DPTA-NO has

been shown to ameliorate microvascular dysfunction and prevent

ECM development only at high concentrations (1 mg/mouse

every 12 hours) with the generation of NO levels well above those

attained under physiological conditions [16]. These high levels

induce important side effects such as marked hypotension [16] and

worsening of the infection-induced anemia [15]. Therefore, It

remains to be shown whether more physiologically and clinically

relevant strategies to improve NO bioavailability are also effective

in preventing ECM development while generating less significant

side effects.

Several factors may help to explain the states of low NO

bioavailability and hypoargininemia that occur during ECM,

consequently a number of interventions can be devised to correct

these deficiencies. In addition to releasing hemoglobin, hemolysis

may also release large amounts of arginase, which competes with

NOS for the same substrate, L-arginine, depleting its endogenous

pools and generating urea plus ornithine rather than NO [23,24].

Arginine supplementation, with or without arginase inhibition, is

therefore expected to improve NO bioavailability. Interestingly,

although clinical trials with L-arginine infusion have been

performed in malaria endemic areas and showed that it ameliorates

malaria-related endothelial dysfunction and is safe [19,25], this

approach has not been explored in ECM. On the other hand, even

in the presence of proper amounts of substrate, NOS malfunction

may occur and result in decreased production of NO. In fact, a

decrease of NOS activity in the brain has been shown in PbA-

infected moribund mice [26,27]. NOS is a homodimeric oxidore-

ductase containing heme, flavin adenine dinucleotide, flavin

mononucleotide, and tetrahydrobiopterin (BH4), which is a cofactor

essential for the catalytic activity of three major NOS isoforms:

neuronal (nNOS), inducible (iNOS), and endothelial (eNOS) [17].

The coupling between the NO substrate, L-arginine, and the heme

site requires BH4 to bind in the dimer interface of NOS. BH4

depletion, which results from its oxidation and/or reduced

synthesis, causes functional uncoupling of NOS, which results in

the generation of more superoxide and less NO [28]. In this case,

BH4 supplementation may improve NOS function.

One alternative strategy to overcome the low NO bioavailability

in ECM without boosting NO generation is to maximize signaling

by the available NO. The most studied and well characterized

pathway by which NO can exercise its biological effects is through

soluble guanylyl cyclase (sGC) activation, resulting in increased

levels of cyclic guanosine monophosphate (cGMP) [17]. cGMP

levels are decreased by 60% in the brain of mice with ECM and

prophylactic administration of DPTA-NO can restore them to

values encountered in uninfected animals [16]. In healthy states,

tissue cGMP levels are determined by a balance between the

activities of sGC and cyclic nucleotide phosphodiesterases (PDEs)

that catalyze the breakdown of cGMP [29]. Drugs such as

sildenafil increase brain cGMP levels through inhibition of PDE-5

and therefore prolong the downstream effects of NO, providing for

improved NO activity without changing NO generation [30].

Therefore, sildenafil administration alone or coupled with lower

doses of NO-donors such as DPTA-NO itself might be expected to

magnify the effects of limited endogenous NO production and

prevent ECM without causing the marked side effects observed

with high doses of DPTA-NO.

Finally, alternative NO donors could be considered. It has been

experimentally [31,32] and clinically [33,34] shown that deoxygenated

hemoglobin in an acidic environment reduces nitrite to NO causing

vasodilation. This effect may have an important function in providing

NO in sites of low oxygenation, such as in ischemia. Since we have

previously shown that ECM is associated with vasospasm, decreased

blood flow, and regional hypoperfusion in the brain [14], we

anticipated that administration of sodium nitrite to PbA-infected mice

might lead to endogenous NO generation and amelioration of the

microcirculatory dysfunction decreasing mortality.

In the present study, we evaluated the efficacy and safety of

these different strategies, independently or in combination, in

preventing the development of ECM and improving NO

bioavailability during the infection by P. berghei ANKA. We

show that none of the strategies aimed to increase the endogenous

production of NO by NOS, or boost its effects through the sGC

pathway, were efficient to prevent ECM. We also show that lower

doses of DPTA-NO did not prevent ECM, but protection was

obtained when this strategy was combined with PDE-5 inhibition

by sildenafil. Finally, we show that the combined therapy did not

produce all the adverse side effects generated by the prophylactic

treatment with high doses of DPTA-NO alone.

Materials and Methods

Mice, parasites and infection
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. All

experimental protocols were reviewed and approved by LJBI’s

Institutional Animal Care and Use Committee (Permit Number:

NO-Heme 001) and all efforts were made to minimize suffering.

Six to eight week old C57BL/6 mice (18–20 g) were obtained

from Jackson Laboratories (Bar Harbor, ME). Mice were housed

in groups of no more than five per cage with free access to chow

and water and allowed to adapt to their new environment for three

days before experimentation. The Plasmodium berghei ANKA

PbA-GFPcon 259cl2, which is a genetically modified parasite of

clone cl15cy1 of the ANKA strain that expresses GFP constitu-

tively during the whole life cycle, was used (a kind donation of

MR4, Manassas, VA; deposited by CJ Janse and AP Waters; MR4

reagent number: MRA-865). The parasite was propagated in

C57BL/6J mice and in each experiment a fresh blood sample was

obtained from a passage mouse and a suspension containing

16106 parasitized red blood cells (pRBC) in 100 mL was injected

intraperitoneally (IP) in each mouse of the experimental groups.

Parasitemia was checked using flow cytometry and quantified by

counting the number of pRBC in 10,000 RBC beginning on day 4

after infection.

Clinical assessment
Motor behavior and rectal temperature were checked daily as

described before [35]. Briefly, a set of six simple behavioral tests

(transfer arousal, locomotor activity, tail elevation, wire maneuver,

contact righting reflex and righting in arena) adapted from the

SHIRPA protocol [36,37] was used to provide a better estimate of

the overall clinical status of the mice during infection. The

performance in each test was assessed and a composite score was

determined ranging from 0 to 23, where 23 indicates maximum

performance and 0 indicates complete impairment – usually coma.

Body temperature was monitored using an Accorn Series

Thermocouple thermometer with a mouse rectal probe (Oakton

Instruments, Vernon Hills, IL). ECM was defined as the

presentation of one or more of the following clinical signs of

neurological involvement: ataxia, limb paralysis, poor righting

reflex, seizures, roll-over, coma.

NO-Based Strategies to Prevent Cerebral Malaria
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Treatments
PbA-infected mice were treated with either saline, dipropylene-

triamine NONOate (DPTA-NO, Cayman Chemical, Ann Arbor,

MI – 0.01, 0.1 and 1 mg/mouse), L-arginine (Sigma-Aldrich, St.

Louis, MO – 4 mg/mouse), tetrahydro-L-Biopterin (BH4, Cay-

man Chemical – 1 mg/mouse), Nv-hydroxy-nor-Arginine (nor-

NOHA, Bachem, Torrance, CA – 250 mg/mouse), sildenafil

(Sigma-Aldrich, 0.001, 0.01 and 0.1 mg/mouse), NaNO2 (Sigma-

Aldrich, 0.72 mg/mouse), and selected combinations of these

drugs via IP, twice a day starting on day 0. All drugs were diluted

in saline and a total volume of 100 ml/mouse per dose was injected

per treatment. L-arginine dosing was based in a previous human

malaria study showing that a similar dose (12 g, or approximately

200 mg/kg) improved endothelial function in patients with

moderately severe falciparum malaria [19]. In healthy rats,

intravenous injection of L-arginine induces a rapid and transient

(60 minutes) increase in plasma levels, but arginine levels in the

brain remain elevated for more than 8 hours [38,39]. Oral

supplementation with 10 mg/kg/day of BH4 prevents endothelial

dysfunction in murine models of non malarial pathologies with

chronic vascular oxidative stress [40,41], but doses as high as

50 mg/Kg IP twice a day were used and well tolerated [42]. As

administration of BH4 in the presence of conditions with increased

oxidative stress may lead to its rapid oxidative degradation and

thus limited duration of the beneficial effects [43], we used a high

dose in our experiments. Nor-NOHA is a potent arginase inhibitor

and the dosage was based in a previous study showing that a

similar dose increased cellular L-arginine content in lungs of

ovalbumin-exposed mice [44]. Sildenafil dosing was based on

studies showing that similar doses given orally or subcutaneously

improved recovery after stroke in rats [45,46]. NaNO2 dose was

calculated to release, in the presence of deoxyhemoglobin,

potentially the same amount of NO as 1 mg of DPTA-NO using

the following reaction: NO2
2 (nitrite)+HbFe2+ (deoxyhemoglo-

bin)+H+RHbFe3+ (methemoglobin)+NO+OH2 [34].

Preparation and implantation of Alzet osmotic pumps
We also used an alternative method of L-arginine delivery using

osmotic pumps (Alzet, Cupertino, CA) to achieve a continuous

delivery of 200 mg/kg/day of L-arginine during the first 6 days of

infection. Osmotic pumps (model 1003D, constant delivery rate of

1 mL/hour for 3 days) were filled with the appropriate solution

(160 mg/ml of arginine or saline as control – 100 mL final volume)

and primed in 0.9% sterile saline at 37uC for approximately

4 hours to ensure immediate delivery of the contents after

implantation. Mice were anesthetized using isofluorane and the

primed pumps were implanted subcutaneously on the back,

slightly posterior to the scapulae, under sterile conditions in the

same day of infection. Pumps were changed on day 3 post

infection. A bolus injection of L-arginine (4 mg/mouse) or saline

was given IP just after implantation to a rapid establishment of a

steady state condition.

Hematocrit, plasma nitrite and exhaled NO
Hematocrit levels were measured in blood samples (20 ml) on

day 6 post infection using heparinized micro-hematocrit capillary

tubes (Chase, Rockwood, TN). Plasma nitrite content was

measured using an ENO-20 NOx Analyzer (Eicom, San Diego,

CA) according to the manufacturer’s instructions. Plasma samples

(20 ml) collected on day 6 twelve hours after the previous dose of

any given treatment were mixed with the same volume of

methanol using a vortex for 10 sec, centrifuged at 10,000 G for

10 min and the supernatant was collected and frozen (280uC)

until reading. Levels of exhaled NO were measured using a NOA

280i NO analyzer (Sievers, Boulder, CO) one hour after the

morning treatment on day 5 post infection. Mice were placed in a

custom plexiglas chamber for one min and, after this period, the

NO content of one sample of the chamber’s air was measured.

Cardiovascular parameters
Remote measurement of heart rate and blood pressures

(systolic, diastolic, pulse, and mean arterial pressures) was made

with Data System International telemetry devices (DSI, St. Paul,

MN) on individually housed mice at room temperature as

previously described [47]. During sterile surgery, the catheter tip

of a TA11PA-C20 unit was inserted into the carotid artery of the

anesthetized mouse (xylazine 10 mg/Kg and ketamine 150 mg/

Kg, IP) and the transmitter was secured in a subcutaneous pocket

in the dorsal neck region. Mice were allowed to recover for at least

5 days post surgery and all measurements were carried out in the

home-cage environment. Data were collected during a 30 min

baseline period after which an IP injection of the drug was given

and parameters were followed during the next hour (experimental

period). During the baseline and experimental periods mice were

left alone in the procedure room providing a noise free

environment. Heart rate, systolic, diastolic, and pulse pressures

data were averaged as 10 seconds bins for each animal and the

average for each bin from the same time point in each treatment

group was determined. Means from bins representing the first

30 minutes before injection were then averaged to calculate a

baseline for each group. Data from each bin was converted and

plotted as percentage of baseline.

Statistical analysis
Results were expressed as means and standard errors of the

mean unless otherwise stated. The log-rank test was used to

compare the different survival curves (Figures 1A, 1G, 2A, and

3A). Two-way repeated measurement ANOVA with Bonferroni

posttests was used to analyze parasitemia curves (Figures 1B, 2B,

and 3B). Kruskal-Wallis test with Dunn’s Multiple Comparison

post tests were used when comparing if one parameter varied

among three or more different treatment groups (Figures 1C–1F,

2C–2D, and 3C–3F). Mann-Whitney test was used when just two

groups were analyzed (Figures 1H). When combined prophylactic

treatments and multiple concentrations of DPTA-NO or sildenafil

were tested, post-tests to check for linear trend following Kruskal-

Wallis test were also performed (Figures 1F, 3D and 3F). A p-

value,0.05 was considered significant. Lowess curves were

calculated for the cardiovascular parameters to show the trend

of the data in each group. Normal ranges for each parameter were

calculated based in values obtained from four saline treated

animals. The range of values falling within the mean plus and

minus two standard deviations (SD) was considered normal and

treatments that decrease or increase the parameter values outside

this range were considered to affect the parameter (Figures 4A–

4E). All statistics were calculated using GraphPad Prism 4.01

(GraphPad Software, San Diego, CA).

Results

Strategies to increase L-arginine availability or improve
NOS activity did not prevent ECM

We first attempted to prevent ECM in PbA-infected mice by

addressing the possibility that low NO bioavailability is related to

hypoargininemia, whether or not caused by increased arginase

activity, or NOS dysfunction caused by BH4 deficiency. The

strategies consisted of supplementing arginine and/or BH4, with

or without inhibition of arginase. However, none of these

NO-Based Strategies to Prevent Cerebral Malaria
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prophylactic treatments, given alone or in combination, were able

to decrease mortality in PbA-infected mice in the doses and

schedules used (Figure 1A). The prophylactic treatments did not

change the course of parasitemia (Figure 1B) or the clinical status

of the mice during infection, as verified by rectal temperature

(Figure 1C) and motor behavior (Figure 1D) on day 6 of infection.

We determined the levels of exhaled NO in mice of groups that

received L-arginine, nor-NOHA or the combination of L-

arginine+nor-NOHA, but no significant changes in exhaled NO

levels were observed when compared with uninfected controls or

animals prophylactically treated with saline (Figure 1E). Compar-

atively, mice that received 1 mg of DPTA-NO showed very high

levels of exhaled NO (Figure 1E). Although exhaled NO level

measurements in mice can detect substantial changes in NO

bioavailability, it may not be sensitive enough to detect more

subtle variations as well as increases in cumulative NO production

[48]. Therefore, we measured plasma nitrite levels on day 6 post

infection. Mean plasma nitrite levels in all groups were

significantly higher than in the saline group (Figure 1F), indicating

that NO production was improved by these prophylactic

treatments. Mean plasma nitrite levels of mice prophylactically

treated with L-arginine+nor-NOHA+BH4 was higher than those

of mice that received nor-NOHA+L-arginine and the latter was

higher than those of mice that received only nor-NOHA. This

trend was statistically significant (Figure 1F) indicating that the

treatments had an additive effect. However, these subtle increases

in NO availability were not sufficient to prevent the development

of ECM.

Failure to keep plasma concentrations of L-arginine constantly

above a therapeutic threshold during the course of infection could

Figure 2. PDE-5 inhibition with sildenafil or sodium nitrite (NaNO2) supplementation did not prevent ECM. Cumulative survival (A),
course of parasitemia (B), rectal temperature (C), and motor behavior score (D) of PbA-infected mice prophylactic treated with saline (n = 28), NaNO2

(n = 13), and sildenafil at 0.1 (n = 19), 0.01 (n = 12) or 0.001(n = 5) mg/mouse. Rectal temperature and motor behavior score were measured on day 6 of
infection. There were no significant differences in the parameters analyzed (p.0.05 for all comparisons).
doi:10.1371/journal.pone.0032048.g002

Figure 1. L-arginine and/or tetrahydro-L-Biopterin (BH4) supplementation combined or not with arginase inhibition did not
prevent ECM. Cumulative survival (A), course of parasitemia (B), rectal temperature (C), and motor behavior score (D) of PbA-infected mice treated
with bolus injections of saline (n = 22), L-arginine 4 mg/mouse (n = 9), the arginase inhibitor Nv-hydroxy-nor-Arginine (nor-NOHA) 250 mg/mouse
(n = 15), BH4 1 mg/mouse (n = 9), nor-NOHA+L-arginine (n = 16), and nor-NOHA+L-arginine+BH4 (n = 9). Rectal temperature and motor behavior score
were measured on day 6 of infection. Exhaled NO (E) from selected groups was measured 1 hour after the morning treatment on day 5 of infection
(n$5 per group). Plasma nitrite (F) from selected groups treated with bolus injections. Cumulative survival (G) and plasma nitrite (H) of PbA-infected
mice prophylactic treated with continuous L-arginine or saline supplementation using implanted osmotic pumps (n = 10 per group). Plasma nitrite (F,
H) was measured on samples collected prior to the morning dosing on day 6 of infection (n$5 per group). *p,0.05, **p,0.01, ***p,0.001, arrows
indicate the presence of a linear trend.
doi:10.1371/journal.pone.0032048.g001
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explain the inefficacy of the protocol of L-arginine supplementa-

tion used in preventing ECM. Nonetheless, supplementation of L-

arginine with the same daily dose used for bolus injection given

continuously using osmotic pumps did not improve survival

(Figure 1G), incidence of ECM, course of parasitemia, or clinical

status (verified by rectal temperature and motor behavior) of PbA-

infected mice when compared to infected control mice. Plasma

nitrite levels on day 6 post infection were significantly higher in L-

arginine supplemented mice than saline controls as revealed when

comparing absolute values (Figure 1H) and the delta nitrite

(difference between the day 6 and baseline – day 0 – values). Mean

baseline nitrite concentrations in plasma were not different

between saline and L-arginine supplemented groups.

Sodium nitrite or sildenafil prophylactic treatments do
not prevent ECM

It has been experimentally [31,32] and clinically [33,34] shown

that deoxygenated hemoglobin in an acidic environment reduces

nitrite to NO causing vasodilation. This effect may have an

important function in providing NO in sites of low oxygenation,

such as in ischemia. As ECM mice present vasospasm and regional

deficits of blood flow in the brain and their adjunctive treatment

with a vasodilator is capable of improving prognosis [14], we

reasoned that prophylactic NaNO2 administration would be able

to generate NO in such ischemic sites ameliorating microcircu-

latory parameters and decreasing mortality. However, there was

no significant difference in mortality and parasitemia between

mice that received or not NaNO2 (Figure 2A–2B), nor in rectal

temperature or motor behavior (Figure 2C–2D), showing that the

prophylactic treatment did not prevent ECM.

Sildenafil increases brain cGMP levels through inhibition of

PDE-5 [30], providing a method to optimize the L-arginine-NOS-

NO pathway so that smaller amounts of NO can still have proper

physiological effects. Based on this premise, we tested whether the

prophylactic treatment with sildenafil could prevent the develop-

ment of ECM. However, even at higher doses (0.1 mg/mouse),

sildenafil did not change survival, course of parasitemia, rectal

temperature, or motor behavior (Figure 2A–2D).

Combined sildenafil administration markedly reduces the
amount of exogenous NO needed to prevent ECM

When given at the effective dose against ECM, DPTA-NO

causes marked hypotension and decreases hematocrit in mice

[15,16]. We asked whether prophylactic treatment with DPTA-

NO at much lower amounts (0.1 and 0.01 mg/mouse every

12 hours) could also be effective in preventing ECM having lower

side effects. This hypothesis was not confirmed, as while

prophylactic DPTA-NO treatment at 1 mg/mouse decreased

mortality and improved the behavior score on day 6 without

significantly changing the course of parasitemia, no significant

differences in survival, course of parasitemia, temperature and

motor behavior were observed between mice prophylactically

treated with lower doses of DPTA-NO and mice receiving saline

(Figures 3A–3D). However, prophylactic treatment with a lower

dose (0.1 mg/mouse) of DPTA-NO in combination with sildenafil

at 0.1 mg/mouse decreased mortality and improved motor

behavior to similar levels as observed with DPTA-NO at 1 mg/

mouse without significant changes in the course of parasitemia or

rectal temperature (Figures 3A–3D). Mice that received the

survival-improving doses of DPTA-NO (1 mg) or DPTA-NO

0.1 mg plus sildenafil (0.1 mg) presented high plasma nitrite levels

when compared with animals that received saline (Figure 3E),

showing an increase in the NO bioavailability in these groups. The

use of lower amounts of DPTA-NO allowed by the addition of

sildenafil also resulted in the avoidance of the adverse effect of high

DPTA-NO doses on hematocrit (Figure 3F).

Figure 3. PDE-5 inhibition with sildenafil decreases the amount of dipropylenetriamine NONOate (DPTA-NO) necessary to prevent
ECM. Cumulative survival (A), course of parasitemia (B), rectal temperature (C), and motor behavior score (D) of PbA-infected mice treated with saline
(n = 29), DPTA-NO (1, 0.1 or 0.01 mg/mouse, n = 10 per group), DPTA-NO+sildenafil (0.1 mg/mouse of each drug, n = 18), and sildenafil (0.1 mg/
mouse, n = 19). Plasma nitrite (E) and hematocrit (F) from selected groups were measured on samples collected prior to the morning dosing on day 6
of infection (n$5 per group). *p,0.05, **p,0.01, ***p,0.001, arrows indicate the presence of a linear trend.
doi:10.1371/journal.pone.0032048.g003
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Lower amounts of exogenous NO combined with
sildenafil decrease the cardiovascular side-effects
observed with high doses of DPTA-NO

We evaluated whether the effects of DPTA-NO injection on

arterial pressure (systolic, diastolic, pulse and MAP) as well as on

heart rate would be avoided or minimized by decreasing the dose

in the presence or not of sildenafil (0.1 mg). Administration of

DPTA-NO 1 mg decreased MAP, systolic and diastolic pressure

levels to around 50% of baseline 10 minutes after injection and

these parameters were kept low during the observation period

(Figure 4A–4D). Interestingly, the pulse pressure decrease (defined

as systolic minus diastolic pressure) shows that the drug had a

greater effect on systolic than on diastolic pressure. Mice that

received DPTA-NO 0.1 mg, or sildenafil 0.1 mg/mouse showed a

less intense variation in these parameters, which were kept mostly

within the range observed in mice receiving only saline, or showed

a late decrease (Figure 4A–4D). Mice that received DPTA-NO

0.1 mg plus sildenafil 0.1 mg/mouse showed a delayed decrease in

systolic, diastolic, and mean arterial pressures, but pulse pressure

was kept within the normal range during all the observation period

(Figure 4A–4D). There were no significant differences in heart rate

curves of mice in the different groups and all of them were kept

within the normal range (Figure 4E).

Discussion

Low NO bioavailability has been implicated in the pathogenesis

of both human and experimental CM [15,16,20,49]. In the

present study, we show that in ECM: a) prophylactic therapies

aiming to increase the amount of L-arginine available for NOS

through L-arginine or BH4 supplementation, with or without

arginase inhibition, in single or combined therapies, increased NO

bioavailability but did not prevent ECM in the doses and schemes

used; b) nitrite supplementation or PDE-5 inhibition also did not

prevent ECM in the doses and schemes used; c) a high amount of

NO supplementation provided by a potent NO-donor is necessary

to prevent the disease, but this amount can be reduced when

combined with a PDE-5 inhibitor; d) the combined sildena-

fil+DPTA-NO (0.1 mg of each drug) prophylactic therapy did not

present all the adverse effects observed in the prophylactic

treatment with the high dose of DPTA-NO alone.

There are numerous potential explanations for the failure of the

NO-promoting strategies used in this study in preventing ECM.

One consideration is that the prophylactic agents were not

administered in sufficient amounts to achieve therapeutic levels

during a sufficient period. The doses chosen for L-arginine, nor-

NOHA and BH4 were similar or even higher than those used in

previous studies showing their pharmacodynamic effects on

relevant parameters such as reversal of endothelial dysfunction

Figure 4. PDE-5 inhibition with sildenafil does not increase
dipropylenetriamine NONOate (DPTA-NO) side-effects in car-
diovascular parameters. Changes in mean arterial pressure (MAP, A),
systolic pressure (B), diastolic pressure (C), pulse pressure (D) and heart
rate (E) following one IP injection of saline (black dots and lines), DPTA-
NO (1 and 0.1 mg/mouse, red and blue dots and lines, respectively),
sildenafil (0.1 mg/mouse, green dots and lines), and DPTA-NO+sildenafil
(0.1 mg/mouse of each drug, purple dots and lines). Vertical doted lines
represent the time when the IP injection was given and separate the
baseline period from the experimental period. Results are expressed as
the percentage change in relation to the mean of the baseline period
for each group. Horizontal doted lines represent the range of values
falling within the mean plus and minus two standard deviations (SD) of
the baseline value calculated for saline treated group. n = 4 per group.
doi:10.1371/journal.pone.0032048.g004
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in human malaria (L-arginine, [19]) and vascular oxidative stress

(BH4, [40,41]) or arginase inhibition in a model of asthma (nor-

NOHA, [44]). However, we have not performed pharmacokinetic

studies of the compounds we used. In normal rats intravenous

injection of 0.1 mmol of L-arginine (57 mg/kg) induces a transient

(60 minutes) increase in plasma levels but sustained (more than

8 hours) increase in brain levels [38,39]. In addition, DPTA-NO

prevents ECM despite its short period (less than four hours) in the

bloodstream after IP injection [16], indicating that it is not

necessary to keep high levels of NO during long periods of time to

prevent ECM. On the other hand, pharmacokinetics varies among

species and malaria infection can change the pharmacokinetic

profile of compounds as it has been shown for L-arginine [50].

The fact that the injection of L-arginine, BH4 and/or nor-

NOHA did not result in increased levels of exhaled NO might

suggest in principle that the compounds were not properly

absorbed or these doses were insufficient to induce plasma levels

and tissue distribution compatible with the generation of

detectable levels of NO. This concern is particularly relevant for

L-arginine since a similar dose given to patients with severe

malaria was able to increase exhaled NO levels by 55% [19].

However, there are a number of factors to consider: 1)

methodologically, the volume of exhaled air and its NO content

are much higher in humans facilitating detection of relatively small

differences between groups [51]. In mice, although exhaled NO

level measurements can detect marked changes in NO bioavail-

ability (e.g., after DPTA-NO injection), it may not be sensitive

enough to detect more subtle variations as well as increases in

cumulative NO production [48]; 2) Timing is important. In the

study by Yeo et al. [19], exhaled NO was measured at a single

point at the end of the 30-minute L-arginine infusion and detected

a mean 55% increase in exhaled NO, but it is not known for how

long these levels were maintained. In mice, we measured exhaled

NO levels one hour after an intraperitoneal bolus injection and

because the baseline levels in mice were already low (3–5 PPB),

small and/or transient increases might be harder to detect; 3) The

increase in exhaled NO after L-arginine infusion was obtained in

patients with moderately severe malaria, whose plasma levels of

NO-quenching acellular hemoglobin is high but yet less than half

those seen in patients with severe malaria (2.6 versus 5.4 uM,

respectively - [19]). It is not know whether L-arginine infusion

would have the same effect in the latter group since free

hemoglobin stoichiometrically consumes micromolar quantities

of NO [52,53]. In mice, mean acellular plasma hemoglobin levels

also increase with disease severity (plasma levels of about 3 uM on

day 4 and 7 uM on day 6 of infection - [16]).

For these reasons, plasma nitrite levels are likely to be a more

reliable indicator of the efficacy of compound delivery. Indeed, all

prophylactically treated groups (L-arginine when given in bolus or

continuous delivery, and bolus injections of nor-NOHA, BH4 and

the combinations) showed increased plasma nitrite levels com-

pared to PbA-infected mice receiving saline (Figures 1F and 1H).

Moreover, treatments were additive, with a significant trend for

higher nitrite levels in groups receiving two (L-arginine+nor-

NOHA) or three (L-arginine+nor-NOHA+BH4) compounds. In

addition, it is important to stress that the plasma nitrite

measurements in groups treated with bolus injection were made

12 hours after dosing (day 6 in the morning, dose received on day

5 in the evening), therefore showing that these are not just

transient increases in nitrite levels, but correspond to lasting

increased production of NO. Therefore, we may conclude that the

bolus injections of L-arginine and/or nor-NOHA combined or not

with BH4 supplementation, resulted in increased NO bioavail-

ability, but this was not enough to prevent ECM. Indeed, plasma

nitrite levels achieved by L-arginine and/or BH4 supplementa-

tion, with or without arginase inhibition, were increased but not to

same degree as those attained by prophylactic treatment with

DPTA-NO or DPTA-NO plus sildenafil (see Figure 3E).

The half-life of L-arginine is shorter in patients with malaria

when compared to healthy adults [50] and a similar situation could

occur in PbA infected mice, which could explain the inefficacy of the

L-arginine prophylactic treatment to prevent ECM. We tried to

accomplish enhanced NO production using an improved method

for L-arginine delivery with subcutaneous osmotic pumps, which

allow its continuous infusion. Although this method also resulted in

increased plasma nitrite levels on day 6 of infection (Figure 1H) this

scheme did not prevent ECM, suggesting that the fact that animals

were supplemented with bolus injection was not the single factor

responsible for the inefficacy of L-arginine supplementation in

preventing ECM. Nevertheless, we do not discard the possibility

that higher doses of L-arginine, with or without association with

other compounds, could be effective to generate the high levels of

NO needed to prevent ECM.

Other circumstances can be claimed to explain the failure of most

treatments to prevent ECM. L-arginine is used as a substrate by five

different sets of enzymes: a) arginyl-tRNA synthetase; b) NO

synthases; c) arginases; d) arginine:glycine amidinotransferase; and

e) arginine decarboxylase [23]. We showed that it is possible to

increase the production of nitrite, indicative of NOS activity, during

the infection by the treatment with a non-selective arginase inhibitor

associated or not with L-arginine supplementation. This indicates

that a deficiency of L-arginine due to arginase consumption occurs

in ECM, but the possible indirect consumption of L-arginine by the

other three pathways was not ruled out. Of particular interest is the

enzyme arginine decarboxylase, which synthesizes agmatine, an

endogenous neuromodulator induced in response to stress and/or

inflammation, that increases the expression of eNOS, irreversibly

inhibits nNOS, and downregulates iNOS [54,55,56]. It remains to

be shown whether a potential increase in activity of such enzymes

interferes with the total NO generation in ECM. Intracellular L-

arginine transport through the cationic amino acid transporters can

also regulate substrate availability for NOS [24]. Downregulation of

these transporters during the infection also could explain the failures

in the treatments.

NOS activity is inhibited in ECM [26], but the mechanism of

inhibition is unknown. We hypothesized that hypoargininemia due

to L-arginine consumption by arginase and/or BH4 deficiency

might play a role in NOS malfunction in ECM. The fact that the

combined injection of L-arginine+nor-NOHA+BH4 induced

higher levels of plasma nitrite than L-arginine+nor-NOHA and

that these two combinations induced levels higher than each

compound separately suggests that increased arginase activity and

eNOS uncoupling both contribute to impaired NO production in

ECM. Regulation of NOS is complex and dependent on several

co-enzymes (such as NADPH, flavin adenine dinucleotide and

flavin mononucleotide) and co-factors (BH4, calmodulin, heme,

and calcium) and their activity can be regulated by several kinases,

phosphatases and the endogenous competitive inhibitor asymmet-

rical dimethylarginine (ADMA) [48,57]. Indeed, plasma levels of

ADMA are increased in patients with severe malaria when

compared to healthy controls and were an independent predictor

of mortality in these patients [22]. The plasma L-arginine/ADMA

level ratio has been considered an important factor leading to

eNOS inhibition in malaria and sepsis [22,58]. In ECM, plasma

ADMA levels have been shown to decrease instead of increase

[16], which may be considered an intrinsic difference between

HCM and the murine model. However, the plasma L-arginine/

ADMA level ratio is also decreased in ECM and this measure may
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be more important in determining NOS inhibition by ADMA

than its absolute plasma levels. Therefore, deficiency of other co-

enzymes and co-factors, decrease of L-arginine/ADMA ratio

during infection or mechanisms involving kinases and phospha-

tases can also be involved in the phenomenon.

The failure of sildenafil alone in preventing ECM may as well

be due to insufficient amounts being delivered or could be

explained based on data from erectile dysfunction studies showing

that PDE-5 inhibitors have no effect when the concentrations of

NO and cGMP are very low [29,59], which is the case of mice

presenting ECM [16]. This last interpretation is in line with our

demonstration that when co-administered with an NO-donor

sildenafil shows a protective effect against ECM development. In

this sense, the amount of exogenous NO provided by the injection

of 0.1 mg of DPTA-NO would generate the critical signaling

through cGMP formation which by itself, at this concentration,

would be insufficient to prevent ECM, but became effective with

the extended potency provided by PDE-5 inhibition. The

synergism between the two drugs is also apparent regarding their

effects on cardiovascular parameters, since a late decrease in blood

pressure was observed with the drug combination but not with

each drug independently at the same concentrations. The finding

that the combination of lower doses of DPTA-NO with sildenafil is

able to increase NO bioavailability as shown by increased plasma

nitrite levels and to decrease ECM incidence brings new prospects

for the use of NO donors in severe malaria, the combination being

an alternative to reduce the potent side effects secondary to the

injection of large amounts of DPTA-NO. Although it still affected

blood pressure, there was a considerable delay in relation to

DPTA-NO alone at high dose. In addition, the lower dose of

DPTA-NO, with or without sildenafil, prevented its deleterious

effects on hematocrit. It is therefore possible to envisage

manipulations in the treatment strategy to further minimize its

cardiovascular effects (e.g., administering first the DPTA-NO at

low dose with a later dose of sildenafil to potentiate the low

amounts of NO still present after some time of DPTA-NO

administration).

We also showed that the treatment with sodium nitrite did not

prevent ECM. The rationale for this treatment was based on

studies showing that nitrite would function as an ‘‘on demand’’

NO donor in inflammatory compromised brain vessels that would

present low pH and O2 concentration [31,32,33,34]. Although

these features are present in ECM, if NO generation from sodium

nitrite oxidation occurred, it was not sufficient to modify the

course of the disease.

In summary, the present study indicates that prophylactic

strategies based on NO restoration to improve the outcome of

ECM may be more complicated than originally envisaged. L-

arginine supplementation alone or associated with secondary

strategies such as arginase blockade and BH4 supplementation

were able to increase NO bioavailability but were shown to be

ineffective in preventing ECM in the doses and schemes used.

Therefore, more research is necessary to determine not only the

efficacy of alternative dosing and delivery systems but also to better

characterize the effect of interventions on relevant readouts such

as NO generation, endothelial function and activity of NOS

isoforms especially in the brain. On the other hand, our results

with the combination DPTA-NO at lower doses with sildenafil

indicates that NO-based prophylactic treatments can be optimized

to decrease potential side effects caused by the administration of

high doses of NO.
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