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Abstract

Transforming growth factor beta (TGF-b) plays a pivotal role in Chagas disease, not only in the development of chagasic
cardiomyopathy, but also in many stages of the T. cruzi life cycle and survival in the host cell environment. The intracellular
signaling pathways utilized by T. cruzi to regulate these mechanisms remain unknown. To identify parasite proteins involved in
the TGF-b response, we utilized a combined approach of two-dimensional gel electrophoresis (2DE) analysis and mass
spectrometry (MS) protein identification. Signaling via TGF-b is dependent on events of phosphorylation, which is one of the
most relevant and ubiquitous post-translational modifications for the regulation of gene expression, and especially in
trypanosomatids, since they lack several transcriptional control mechanisms. Here we show a kinetic view of T. cruzi
epimastigotes (Y strain) incubated with TGF-b for 1, 5, 30 and 60 minutes, which promoted a remodeling of the parasite
phosphorylation network and protein expression pattern. The altered molecules are involved in a variety of cellular processes,
such as proteolysis, metabolism, heat shock response, cytoskeleton arrangement, oxidative stress regulation, translation and
signal transduction. A total of 75 protein spots were up- or down-regulated more than twofold after TGF-b treatment, and from
these, 42 were identified by mass spectrometry, including cruzipain–the major T. cruzi papain-like cysteine proteinase that
plays an important role in invasion and participates in the escape mechanisms used by the parasite to evade the host immune
system. In our study, we observed that TGF-b addition favored epimastigote proliferation, corroborating 2DE data in which
proteins previously described to be involved in this process were positively stimulated by TGF-b.
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Introduction

Trypanosoma cruzi (T. cruzi) is a flagellate parasite that causes

Chagas disease - a widely distributed, debilitating illness that

constitutes a serious health problem in Latin America, affecting

10–12 million people and killing over 15,000 each year [1]. In this

disease, transforming growth factor beta (TGF-b) seems to play a

pivotal role in parasite infection, multiplication and the degree and

rate of cardiac fibrosis. TGF-b is involved in acute and chronic

chagasic cardiopathy. High levels of TGF-b and the activation of

its signaling pathway were shown to be peculiar aspects in patients

with chronic Chagas disease [2,3]. We recently demonstrated a

beneficial action of a TGF-b signalling inhibitor (SB-431542)

administered during the acute phase of experimental Chagas

disease, indicating that inhibition of TGF-b-induced activity could

represent a new therapeutic action for acute and chronic Chagas

disease treatment [4].

Besides its relevant role in the pathology of Chagas disease,

TGF-b was also observed to be intimately associated as a regulator

of different stages of the T. cruzi life cycle: 1) TGF-b can promote

parasite survival [4]; 2) host cell infection by T. cruzi is dependent

on active TGF-b and requires fully functional TGF-b receptors

[5–8]; 3) T. cruzi infection is able to induce the expression of TGF-

b in different models [2,9–11]; 4) the parasites are able to directly

activate latent TGF-b [7] and 5) amastigote forms of T. cruzi, once

in the cytoplasm, internalize host cell TGF-b, thereby regulating

their own intracellular life cycle [12]. Taken together, these data

indicate an important role for TGF-b in T. cruzi biology. However,

the mechanisms used by the parasite to recognize and respond to

this host-derived factor remain partially unknown.

TGF-b belongs to a group of structurally related polypeptides

collectively called ‘‘TGF-b superfamily’’. Members of this family

are involved in the regulation of a large variety of processes, such

as cell growth, tissue remodeling, development, differentiation,

motility, angiogenesis, inflammation, immune regulation, fibrosis,

apoptosis and tumorigenesis [13–16]. In its classic pathway,

TGF-b signaling begins by ligand binding to a transmembrane

receptor with intracellular serine/threonine kinase activity,
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known as TGF-b receptor-II (TRII). Upon ligand binding, TRII

phosphorylates and stimulates the serine/threonine kinase

activity of TGF-b receptor-I (TRI). Once activated, TRI

phosphorylates the cytoplasmic signaling proteins Smad-2 and

Smad-3, which then associate with Smad-4, translocate into the

nucleus as a multiprotein complex, and stimulate the transcrip-

tion of TGF-b responsive genes [17]. Several non-Smad signaling

pathways are also known to be activated or modulated by TGF-b
in eukaryotic cells. These include Jun-kinase, p38 MAP kinase,

Ras/MEK/ERK, Rho-A/p160ROCK, and PP2A/S6 kinase,

which are known as alternative pathways induced by TGF-b
[18]. Interestingly, homologs of Ras [19] Rho [20] and ERK

[21,22] have been characterized in T. cruzi and T. brucei,

suggesting that at least some of these alternative TGF-b pathways

might be functional in these parasites. Overall, signaling via

TGF-b seems always to be dependent on phosphorylation, which

is one of the most relevant and ubiquitous post-translational

modifications (PTM). This PTM is related to many molecular

mechanisms, such as protein activation, localization, interaction

and turnover. Phosphorylation is regulated by a highly dynamic

network of protein kinases and phosphatases that modulate

crucial cellular functions, including cell growth, proliferation,

differentiation, migration, metabolism and apoptosis [23,24].

The identification of differential patterns of protein phosphor-

ylation is possible through the use of a phosphoproteomic

approach, which provides insights into signal transduction

pathways, triggered by growth factors, including TGF-b [25,26].

Proteomic technology has already been used to study the three

most clinically relevant trypanosomatids T. cruzi, Leishmania and

T. brucei [23,27–34], performing as a powerful tool for the study of

global gene expression patterns, since it enables the analysis of the

whole protein profile of an organism in a single experiment. It is

worth reminding that trypanosomatids indiscriminately transcribe

most genes in large polycistronic units [35,36], unlike metazoa and

yeast, which use regulated transcription factors to direct the

expression of certain genes, thus emphasizing the critical role of

PTM in the regulation of T. cruzi proteins.

Due to the relevant role of TGF-b in T. cruzi biology, a study of

the proteins involved in TGF-b response is of crucial interest to

understand how a host molecule can interfere in the parasite’s

developmental process. Therefore, the aim of the present study is

to characterize T. cruzi molecules responsive to TGF-b through a

combined approach employing two-dimensional gel electropho-

resis (2DE) analysis and mass spectrometry (MS) protein identi-

fication. Here we show that incubation of T. cruzi epimastigotes

(Y strain) with TGF-b promotes a remodeling of the parasite

phosphorylation network and protein expression pattern influenc-

ing cellular processes such as metabolism, heat shock response,

cytoskeleton arrangement, oxidative stress regulation, translation,

signal transduction and proteolysis. We also observed that TGF-b
stimulated many biological events in different forms of T. cruzi,

such as epimastigote proliferation and differentiation of trypomas-

tigotes into amastigotes (amastigogenesis).

Materials and Methods

Cell Culture
Epimastigote forms of T. cruzi (Y strain) were grown in liver

infusion tryptose (LIT) medium supplemented with 10% fetal

bovine serum at 28uC.

Sample Preparation
Epimastigotes (56108) from 5-day-old cultures (exponential

growth phase) were centrifuged and washed two times with

phosphate buffered saline containing bovine serum albumin (PBS/

BSA 0.1%) and resuspended in the same buffer. Parasites were

incubated with TGF-b (5 ng/ml) for 1, 5, 30 or 60 minutes. The

samples were then centrifuged and washed twice with PBS,

resuspended in lysis buffer (PBS containing 1:100 protease and

phosphatase inhibitor cocktails from Sigma) and submitted to four

cycles of freeze–thawing. Samples were precipitated in 17%

tricholoracetic acid, centrifuged and the pellet washed in cold

acetone/triethanolamine 1%. The samples were solubilized in

isoelectric focusing buffer (2% CHAPS, 8 M urea) containing

phosphatase inhibitor cocktail (Sigma) and stored at 270uC.

Protein concentration was determined by the RCDC method

(BioRad), using bovine serum albumin as standard.

Two-Dimensional Electrophoresis (2DE)
Nonlinear IPG strips in the pH range 3–10 were rehydrated in a

buffer (8 M urea, 2 mM tributhylphosphine, 1% ampholytes, 2%

CHAPS) containing 100 mg (7 cm) or 500 mg (17 cm) of total

protein extracts. Isoelectric focusing was conducted on a Protein

IEF Cell (BioRad) according to the manufacturer’s instructions.

The strips were then re-equilibrated sequentially with 130 mM

DTT and 135 mM iodoacetamide in equilibration buffer (6 M

urea, 20% glycerol, 2% SDS) for 15 minutes each. Proteins within

the equilibrated strips were resolved on 12% SDS-PAGE gels.

Gel Staining
Gels were stained sequentially with phosphoprotein-specific

Pro-Q Diamond stain and the total protein stain Sypro Ruby (both

from Molecular Probes, Invitrogen) according to the manufactur-

er’s protocols. After that, gels were stained with colloidal

Coomassie Brilliant Blue G-250 (BioRad) as described elsewhere

[37].

Image Analysis
Protein spots were visualized by scanning the stained gels using

proper excitation and emission wavelengths in a Typhoon Trio

scanner (Applied Biosystems) and the obtained images were

analyzed with the PDQuest software version 8.0.1 (BioRad).

The spots were quantified on the basis of their relative volume:

the amount of a protein spot was expressed as the sum of

the intensities of all the pixels that made up the spot. As positive

and negative controls for the staining of phosphorylated proteins we

used the PeppermintStickTM phosphoprotein molecular weight

standard (Molecular Probes, Invitrogen), which is composed of a

mixture of phosphorylated and non-phosphorylated proteins. To

ensure that the values found were due to protein phosphorylation

and not to a higher load of proteins in acrylamide gels, we used a

ratiometric parameter by dividing the value obtained in Pro-Q

staining by the value obtained in Sypro Ruby staining for each spot

of interest. In this study, the analyses were based on the comparison

of protein expression and/or phosphorylation from T. cruzi

epimastigote samples treated or not with TGF-b at different times

(1, 5, 30 or 60 minutes). Spots displaying at least a two-fold difference

in their pixel intensity were assigned as differentially expressed and/

or phosphorylated. We analyzed three to four gels for each

experimental condition and selected only spots with normalized

volumes that showed more than 2-fold increase or decrease after

TGF-b stimulation in at least one of the studied time points.

Protein Digestion and MS/MS Analysis
Selected protein spots were manually excised from 17 cm gels

and placed in 0.5 ml microtubes. Protein digestion and peptide

extraction were conducted as previously described [38].

Phosphoproteome of T. cruzi Incubated with TGF-b
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Database Searching and Criteria for Protein Identification
The Mascot software (www.matrixscience.com) was set up to

search the NCBInr database assuming the digestion enzyme as

trypsin and a peptide tolerance +/21.2 Da. The following

variable modifications were specified: Acetyl (protein N-term),

Carbamidomethyl (C), Deamidated (NQ), Gln RPyro-Glu (N-

termQ), Glu RPyro-Glu (N-term E), Oxidation (HW), Oxidation

(M), Phospho (ST) and Phospho (Y). Criteria for a positive protein

identification included Mascot scores, sequence coverage and

concordance between predicted molecular mass and isoelectric

point with values calculated from the 2DE gels.

Uni-Dimensional Electrophoresis (1DE) and Western
Blotting

Total protein extracts (20 mg) were mixed with protein loading

buffer (62,5 mM Tris-Cl pH 6,8/SDS 3%/Glicerol 10%/b-

mercaptoethanol 1:20) to a final volume of 20 ml. The mixture

was heated at 100uC for 5 minutes. The proteins were then

resolved on 12% SDS-PAGE and transferred to nitrocellulose

membranes (Hybond C, GE). Uniform sample loading and

transfer were verified using Memcode reversible protein stain

(Pierce). Non-specific binding sites were blocked by incubating the

membranes with 5% (w/v) nonfat milk/TBS/Tween-20 0.1% for

1 hour at room temperature. The membranes were probed with

specific primary antibodies (1:500 rabbit anti-elongation factor 1a,

1:20.000 mouse anti-beta-tubulin, both from Sigma-Aldrich, and

1:10.000 rabbit anti-cruzipain, gently given by Dr. Claudia Levy)

in 5% w/v nonfat milk/TBS/Tween-20 0,1% and detected with a

secondary antibody conjugated to peroxidase (HRP) from Pierce

for 1 hour at room temperature. Blots were developed using

Supersignal West Pico Chemiluminescent Substrate (Pierce),

recorded on autoradiography film and scanned with a GS-800

scanner (BioRad) at 600 dpi resolution.

Immunocytochemical Staining
Epimastigote forms of T. cruzi were washed with PBS and then

fixed on a 4% PFA solution for 20 min at 4uC. Fixed parasites

(56106) were incubated with 0.1% Triton X-100 in PBS, followed

Figure 1. Bidimensional phosphoproteome of T. cruzi Y strain epimastigotes. Representative images show the total protein patterns of
T. cruzi treated or not with TGF-b for 1, 5, 30 or 60 minutes. Protein extracts (100 mg) were separated on 7 cm pH 3–10NL IPG strips and 12% SDS-
PAGE gels. Phosphoproteins were stained with Pro-Q Diamond (shown in green) and total protein stained with Sypro Ruby (shown in red). Images
were artificially colored using PD Quest (BioRad) software tools. Phosphoprotein staining was confirmed with the visualization of the two positive
molecular weight control bands (Peppermint Stick – Molecular Probes). The molecular weight (MW) of marker proteins and the pH range of the IEF
gradient are indicated. N = 3.
doi:10.1371/journal.pone.0038736.g001
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by three 10 min blockages in PBS/2% BSA at room temperature.

Then, cells were incubated with primary antibody raised against

recombinant cruzipain (1:1000) or with non-immune rabbit serum

diluted 1:100 in PBS, for 60 minutes at room temperature. After

washes with PBS, parasites were incubated for 60 minutes at room

temperature with secondary antibody (goat anti-rabbit Alexa 488

diluted 1:500; Invitrogen). To stain DNA, cells were incubated

with DAPI (1:5000; Sigma). The slides were then mounted in

BacLight Mounting Oil (Molecular Probes, Invitrogen) and

observed under an epifluorescence microscope (Nikon). Image

processing was performed using ImagePro.

In vitro Proliferation of Epimastigotes
Epimastigote forms of T. cruzi (Y strain) were incubated with

5 ng/ml of recombinant TGF-b1 (R&D). Epimastigote prolifer-

ation rates were evaluated after 24, 48, 72 and 96 hours of TGF-b
stimulation by quantifying the live parasites in a Neubauer

improved counting chamber.

In vitro Amastigogenesis
Infective trypomastigote forms of T. cruzi (Y strain) were

obtained from blood of infected mice at the peak of parasitemia. In

all assays, the living parasites were incubated in serum-free

medium. Amastigogenesis was promoted by acid induction as

previously described [39] and 5 ng/ml of recombinant TGF-b1

(R&D) were added to stimulate parasite differentiation. After

4 hours of acid induction with or without TGF-b stimuli,

differentiated amastigotes were quantified in a Neubauer im-

proved counting chamber and the percentage of differentiation

determined.

Results

Two-dimensional Proteomic Profile of T. cruzi
Epimastigotes in Response to TGF-b

To identify changes in protein phosphorylation and expression

patterns in response to TGF-b, we compared the intracellular

proteome of T. cruzi epimastigotes treated or not with this

cytokine. In order to assess early and long-term changes in protein

phosphorylation and expression patterns, cells were treated with

TGF-b for 1, 5, 30 or 60 minutes and compared with non-treated

cells (Figure 1).

Approximately 200 protein spots were resolved in gels stained

with Sypro Ruby. A total of 75 protein spots (37.5%) were found

to be more than 2-fold up- or down-regulated after TGF-b
treatment. From these, 42 were identified by mass spectrometry

(Table 1) and are indicated in the proteomic map shown in

Figure 2.

Figure 2. Proteomic map of T. cruzi epimastigotes. The image shows the total protein pattern of epimastigotes treated with TGF-b for 1 minute
and separated by 2D-PAGE (17 cm IPG strips in the pH range 3-10NL and 12% SDS-PAGE, CBB-G250 staining). The colored circles indicate protein
spots identified by mass spectrometry that differ significantly only in their phosphorylation (green), or in their expression (red) or in both (brown)
levels in one or more studied time points. The molecular weight (MW) of marker proteins and the pH range of the IEF gradient are indicated. N = 3.
doi:10.1371/journal.pone.0038736.g002
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Protein Phosphorylation Changes in Response to TGF-b
In our analysis, 20 protein spots showed consistent phos-

phorylation changes during all studied times (Table 2). Phos-

phorylation of 50% of the identified proteins was rapidly

increased after 1 minute treatment with TGF-b. Proteins with

highest phosphorylation changes in response to TGF-b, at each

time point, were identified as: mitochondrial precursor Hsp70

(spot 5) in 1 minute; beta-tubulin (spot 9) in 5 minutes; IgE-

dependent histamine-releasing factor (IgE-HRF, spot 34) in 30

minutes and glycosomal malate dehydrogenase (GMD, spot 41)

in 60 minutes. Proteins like prostaglandin F2-alpha synthase and

enolase were identified in two phosphoprotein spots of similar

molecular mass, suggesting that these proteins have at least two

different sites of phosphorylation. Phosphoprotein spots that

showed the highest phosphorylation index at each studied time

point are shown in selected zoom areas of images from gels

stained with Pro-Q Diamond containing the non-treated and

TGF-b treated parasites (Figure 3A and B).

On the other hand, 8 protein spots had their phosphorylation

reduced in response to TGF-b addition. The most dephosphor-

ylated proteins observed in each time point of the study were

identified as: glycosomal malate dehydrogenase (GMD, spot 41) in

1 minute; prostaglandin F2- alpha synthase (Pf2aS, spot 21) in 5

minutes; hypothetical protein (spot 24) in 30 minutes and

mitochondrial precursor Hsp70 (spot 5) in 60 minutes of TGF-b
treatment (Figure 3C and D and Table 2).

Protein Expression Changes in Response to TGF-b
From all 41 identified protein spots showing expression

changes in response to TGF-b treatment (Table 3), 5 spots were

surprisingly up-regulated already in the first minute of

incubation, with cyclophilin A (spot 42) and DnaK (spot 1),

two heat shock proteins, showing the highest induction change.

At 5 minutes of treatment, 19 protein spots had suffered an

increase in expression levels, including the main protein

regulated by TGF-b, cruzipain (spot 15), with a dramatic mean

38 fold increase in expression in parasites treated with TGF-b
compared to those untreated with this cytokine. In the longer

incubation times, 6 protein spots were up-regulated by TGF-b
and the main effect was in a hypothetical protein (spot 24) in 30

minutes and tryparedoxin peroxidase (TRYP, spot 38) in 60

minutes of TGF-b stimulation (Figure 4A and B).

Our data also demonstrated that incubation with TGF-b led

to a down–regulation in expression of many proteins in the

studied time frame. From the 23 protein spots down-regulated

by TGF-b, 30% were already down-regulated in the first

minute, with Prostaglandin F2- alpha synthase (Pf 2aS, spot 12)

being the most repressed. Methylthioadenosine phosphorylase

(MTAP, spot 32) was the most down-regulated protein after 5

minutes of TGF-b addition. In the longer incubation times, 20

protein spots had their expression level decreased, with enolase

(spot 17) and the chaperonin Hsp70 (spot 3) showing the

greatest decrease in expression after 30 and 60 minutes of TGF-

b incubation, respectively (Figure 4C and D and Table 3).

Separation of these proteins into functional groups (Figure 5)

shows that most of them are involved in metabolic processes

(39%), while others are related to heat shock response (24,4%),

translation (12,2%), proteolysis (7,3%), cytoskeleton composition

(4,9%), signal transduction (4,9%), oxidative stress regulation

(2,4%) and hypothetical proteins (7,3%).

Table 2. Proteins with changes in phosphorylation pattern in response to TGF-b.

Fold Changes

FUNCTIONAL GROUPS SPOT NUMBER PROTEIN NAME 1 min 5 min 30 min 60 min

HEAT SHOCK PROTEINS 5 mitochondrial precursor HSP70 8,39 0,72 1,76 0,43

6 mitochondrial precursor HSP70 3,22 0,00* 4,23 2,43

3 HSP70 1,95 1,09 2,05 1,48

7 mitochondrial precursor HSP60 3,65 0,00* 1,11 1,92

14 Hsc70 1,90 1,33 1,35 0,55

CYTOSKELETON PROTEINS 9 beta-tubulin 1,06 2,88 2,13 0,49

27 beta-tubulin 3,13 1,00 1,33 0,53

METABOLISM PROTEINS 11 Prostaglandin F2 alpha synthase 6,36 0,00* 0,00* 3,91

12 Prostaglandin F2 alpha synthase 5,10 4,48 0,82 3,72

21 Prostaglandin F2 alpha synthase 0,45 0,24 3,34 0,37

16 Enolase 3,26 0,08 0,31 1,61

17 Enolase 0,00* 0,00* 2,06 2,30

40 GAPDH 3,42 0,43 1,13 2,52

41 Glycosomal malate dehydrogenase 0,35 2,12 1,66 24,07

HYPOTHETICAL PROTEINS 24 Hypothetical protein 1,79 0,35 0,16 0,00*

25 Hypothetical protein 0,63 0,58 2,05 4,28

TRANSLATION-ASSOCIATED PROTEINS 30 Nascent polypeptide associated complex subunit 2,31 0,47 3,99 0,53

36 Eukaryotic initiation factor 5a 0,62 0,93 0,70 2,19

SIGNAL TRANSDUCTION PROTEINS 34 IgE-dependent histamine-releasing factor 1,90 0,69 4,58 18,58

PROTEASES/PEPTIDASES 10 peptidase M20/M25/M40 4,39 0,00* 2,48 2,00

Fold changes presents the ratio compared with values in the absence of TGF-b stimulation.
*Values equal to zero correspond to spots that could not be detected on gels.
doi:10.1371/journal.pone.0038736.t002
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Proteins that presented changes in phosphorylation were also

separated according to their functional classification (Figure 5, in

green). These proteins are involved in metabolism (40%), heat

shock response (25%), cytoskeleton (10%), translation (10%), signal

transduction (5%), proteolysis (5%) and hypothetical proteins

(10%).

Western blot (WB) assays were performed for some proteins

(elongation factor 1–alpha, beta-tubulin and cruzipain) shown to

be regulated by TGF-b in the proteomic analysis, corroborating

the 2-DE results, as observed in Figure 6. Both approaches

presented the same kinetic patterns, but the absolute fold increase

or decrease values were substantially different, possibly reflecting

the known differences in sensitivity between these two methods.

The dramatic increase in cruzipain expression was also confirmed

by an immunofluorescence assay (Figure 7), that allowed us to

visualize its sub- cellular localization on fixed epimastigotes. The

resultsdemonstratedatypical labelingofroundedstructures localized

at the posterior region, indicating a possible compartmentalization in

reservosomes, especially on control parasites (Figure 7A and C). After

TGF-b addition, the immunofluorescence analysis of cruzipain

stainingclearly increasedanditwaspossible toobserveamore intense

labeling in the flagellar pocket region (Figure 7B and D, white arrow).

Figure 3. Proteins that presented the major phosphorylation changes in response to TGF-b. Magnified regions showing protein spots
that presented the greatest up- (A) or down-(C) phosphoregulation and their respective bar graphics (B and D) with the mean fold change values.
doi:10.1371/journal.pone.0038736.g003
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The intensity of cruzipain staining was quantified using the NIH

ImageJ software in the microscopic images of labeled parasites

(Figure 7C, D and E).

To test if the changes observed in epimastigotes 2DE profiles

after TGF-b addition could be involved in biological events of the

parasite’s life cycle, epimastigotes were incubated with or without

Table 3. Proteins with changes in expression pattern in response to TGF-b.

Fold Changes

FUNCTIONAL GROUPS SPOT NUMBER PROTEIN NAME 1 min 5 min 30 min 60 min

HEAT SHOCK PROTEINS 5 mitochondrial precursor Hsp70 1,02 1,01 0,64 0,65

6 mitochondrial precursor Hsp70 1,50 1,58 4,23 2,43

4 Hsp70 1,04 6,15 0,54 0,41

3 Hsp70 0,00* 1,55 0,41 0,05

7 mitochondrial precursor Hsp60 1,62 0,85 0,32 0,68

8 mitochondrial precursor Hsp60 1,09 1,28 0,67 0,30

1 DnaK 3,90 3,13 0,00* 0,00*

14 Hsc70 1,08 1,55 1,14 1,22

37 GrpE 0,61 0,93 2,83 2,24

42 Cyclophilin A 5,45 1,11 4,13 0,63

CYTOSKELETON PROTEINS 9 beta-tubulin 2,23 3,39 0,38 0,31

27 beta-tubulin 1,10 1,27 0,62 0,49

METABOLISM PROTEINS 11 Prostaglandin F2 alpha synthase 1,18 1,70 1,16 0,67

12 Prostaglandin F2 alpha synthase 0,26 0,84 0,95 0,73

20 Prostaglandin F2 alpha synthase 1,51 1,00 0,22 0,53

21 Prostaglandin F2 alpha synthase 1,37 4,14 0,27 1,67

22 Prostaglandin F2 alpha synthase 2,58 2,95 0,26 1,18

23 Prostaglandin F2 alpha synthase 0,65 3,52 6,20 0,50

31 Aldo-ketoreductase 0,81 1,29 0,38 0,79

16 Enolase 0,58 13,06 1,48 1,32

17 Enolase 0,80 0,60 0,18 1,92

18 Alanine aminotransferase 1,32 8,05 1,27 5,64

40 GAPDH 0,50 2,34 0,95 0,55

41 Glycosomal malate dehydrogenase 1,06 3,37 1,37 0,24

26 Protein disulfide isomerase 1,09 8,07 1,05 1,32

29 Aromatic L-alpha-hydroxyacid dehydrogenase 0,99 2,70 0,42 0,97

19 Tyrosine aminotransferase 1,12 1,38 1,69 1,19

HYPOTHETICAL PROTEINS 24 Hypothetical protein 1,17 0,73 16,71 1,29

25 Hypothetical protein 0,56 7,84 1,58 0,33

13 Hypothetical protein 2,20 8,03 0,32 7,24

TRANSLATION-ASSOCIATED
PROTEINS

30 Nascent polypeptide associated complex
subunit

1,07 1,57 1,38 1,04

36 Eukaryotic initiation factor 5a 1,46 0,60 0,95 1,03

28 Elongation factor 1 alpha 0,95 24,62 0,54 1,24

39 Elongation factor 1 alpha 1,09 4,20 1,55 0,29

35 Proteasome alpha 1 subunit 0,81 1,42 0,86 2,80

SIGNAL TRANSDUCTION PROTEINS 32 Methylthioadenosine phosphorylase 0,55 0,36 0,72 0,73

34 IgE-dependent histamine-releasing factor 0,80 0,70 1,82 0,26

PROTEASES/PEPTIDASES 15 Cruzipain 0,65 38,07 0,42 1,49

10 peptidase M20/M25/M40 1,62 10,03 1,14 0,45

33 hslvu complex proteolytic subunit-like 0,94 4,00 0,79 0,59

OXIDATIVE STRESS REGULATING
PROTEINS

38 Tryparedoxin peroxidase 0,55 1,38 0,71 11,82

Fold changes presents the ratio compared with values in the absence of TGF-b stimulation.
*Values equal to zero correspond to spots that could not be detected on gels.
doi:10.1371/journal.pone.0038736.t003
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TGF-b (5 ng/ml TGF-b, added daily) for 96 hours. Our results

showed that TGF-b addition promoted an increase in epimasti-

gote proliferation in all studied time points. After 24 hours, we

observed an 88% increase in growth compared to epimastigotes

cultivated in LIT medium only (Figure 8A). After verifying the

biological effect of TGF-b on epimastigotes, we investigated if

TGF-b could also influence the amastigote (normally intracellular,

replicative) forms of T. cruzi. For that, we performed an

amastigogenesis assay, in which trypomastigotes were submitted

to acidic conditions with or without 5 ng/ml TGF-b for 4 hours.

We observed that treatment resulted in a higher rate of

differentiation of trypomastigotes into amastigotes (36%) com-

pared to trypomastigotes submitted to acidic conditions only

(Figure 8B). These data indicate that TGF-b acts as a powerful

regulator in different forms of T. cruzi, present both in vertebrate

and invertebrate hosts.

Discussion

In recent years, several groups have used a proteomic approach

to study T. cruzi biology, trying to identify new factors for

diagnostics, virulence, infectivity and mainly, drug targets

Figure 4. Proteins that presented the major expression changes in response to TGF-b. Magnified regions showing protein spots that
presented the greatest up- (A) or down-(C) regulation in expression and their respective bar graphics (B and D) with the mean fold change values.
doi:10.1371/journal.pone.0038736.g004
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[29,31,32,34,40,41]. Signal transduction pathways are highly

dynamic protein networks that integrate information from various

stimuli. We and others demonstrated previously the involvement

of TGF-b in T. cruzi life cycle [6,7,8,12], but a study of parasite

proteins responsive to TGF-b stimulus was still lacking. Here, we

have profiled for the first time a global and kinetic view of T. cruzi

epimastigote proteins responsive to TGF-b using a (phospho)

proteomic approach.

Reversible protein phosphorylation is a key mechanism for the

regulation of major biological processes including metabolism,

proliferation, molecule transport and differentiation. Approxi-

mately 2% of the T. cruzi genome encodes protein kinases [42],

suggesting a major regulatory role for protein phosphorylation in

parasite development and adaptation.

In this study, we used the Pro-Q Diamond technology, which

provides a method for selectively staining phosphoproteins in

polyacrylamide gels. Proteomic studies addressing the response

triggered by TGF-b in different cellular models have been

reported [25,43,44], showing that TGF-b stimuli result in negative

or positive regulation of proteins involved in diverse functions,

such as cytoskeleton arrangement, RNA processing, proteolysis,

metabolism and extracellular matrix synthesis. Some of the

proteins we found to be regulated by TGF-b have already been

described to be directly associated with this molecule, participating

in many physiological processes in the life cycle of protozoan

parasites.

We observed that the mitochondrial precursor Hsp70 had an 8-

fold increase in phosphorylation after one minute of incubation

with TGF-b, being one of the proteins to present a fast and strong

phosphorylation change in response to TGF-b. Heat shock

proteins (Hsps) act as molecular chaperones, binding to a subset

of newly synthesized polypeptides to assist their folding to a well-

defined three-dimensional conformation [45]. Comparative pro-

teomics of developmental stages of Leishmania donovani and T. cruzi

show differences in expression of Hsp60, Hsp70, mitochondrial

Hsp70 and Hsp90 [28,46]. A recent study [47] reported that

Hsp70 interacts with Smad2 and decreases TGF-b signal

transduction.

Tryparedoxin peroxidase (TRYP) was also shown to be

positively regulated by TGF-b. This protein is described as

participating in distinct functions, including general cell detoxifi-

cation and specific signaling during proliferation or differentiation

processes [48]. Our findings lead to the speculation that TGF-b
participates in the differentiation process triggered by TRYP

corroborating to previous study in which it was observed that the

inhibition of TGF-b pathway impaired T. cruzi differentiation into

trypomastigotes at the end of intracellular cycle [8].

Most of TGF-b-responsive proteins pointed out in our study are

associated with metabolic functions. Our data show that

phosphorylation of glycosomal malate dehydrogenase (GMD)

increases on average 24-fold, 60 minutes after TGF-b addition.

This protein participates in sustaining energy supply by acting in

parasite’s aromatic amino acid catabolism. Trypanosomatids

depend on these nutrients for a number of vital cell functions

such as protein synthesis, osmoregulation, energy production and

polyamine biosynthesis, since carbohydrates are rarely available in

the gut of haematophagous insects [49]. Some proteins, like

enolase, presented a reduction in expression levels only in the

longest period of induction with TGF-b. Enolase (2-phospho-D-

glycerate hydrolase) participates in both glycolysis and gluconeo-

genesis [50]. It was also described as a prokaryotic RNA

degradosome component [51,52], which might have implications

on RNA stabilization and/or degradation, favoring the post-

transcriptional control of T. cruzi gene expression.

TGF-b also appears to influence the parasite’s cytoskeleton

arrangement, through the modulation of b-tubulins, the proteins

that form microtubules, and play an important role in the

morphological changes associated with the life cycle of trypano-

somes [53,54,55]. Our data show that this protein is positively

regulated by TGF-b, consistent with the role of TGF-b on

proliferation and differentiation of the parasite. Tubulin has

previously been shown to be up-regulated in hepatic stellate cells

Figure 5. Distribution of the identified proteins into functional groups. Bar graphs presenting the functional groups of proteins that had
their expression (red) or phosphorylation (green) regulated by TGF-b.
doi:10.1371/journal.pone.0038736.g005
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Figure 6. Kinetic view of protein expression in response to TGF-b. Expression pattern of elongation factor 1-a (A), b-tubulin (B) and cruzipain
(C) from T. cruzi epimastigotes incubated with TGF-b at different periods of time. The graphics represent the values found for the kinetic of these
proteins obtained through a 2DE approach and Western blot analysis.
doi:10.1371/journal.pone.0038736.g006
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Figure 7. TGF-b induces cruzipain expression in T. cruzi epimastigotes. Parasites treated (B) or not with TGF-b (A) for 5 minutes were
immunostained for cruzipain and corresponding histograms were obtained using the ImageJ software (C and D). The quantification of the parasite
areas labeled for cruzipain were determinate by the mean of RGB color and demonstrated as a bar graphic (E).
doi:10.1371/journal.pone.0038736.g007
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treated with TGF-b [56]. Moreover, the association of endogenous

Smads with microtubules has been shown to be an important

feature of TGF-b signaling [57].

Interestingly, a tubulin binding protein, named IgE-dependent

histamine-releasing factor, had its phosphorylation increased 30

minutes after TGF-b stimulus. It is also known as translationally-

controlled-tumor-protein (TCTP) and various cellular functions

and molecular interactions have been ascribed to this protein,

many related to its growth-promoting and anti-apoptotic proper-

ties. Since it has been characterized as an anti-apoptotic protein

[58,59] and the blockage of the TGF-b intracellular pathway

induces higher levels of intracellular amastigote apoptosis [8], this

protein could play a role in T. cruzi survival, through the

abrogation of apoptosis induction, but further studies should be

done to confirm this hypothesis.

In our study, the protein with the highest positive regulation was

cruzipain, the major T. cruzi papain-like cysteine proteinase. This

molecule is expressed in all life-cycle stages of the parasite, being

more abundant in replicating forms and especially in the insect

epimastigote stage. Cruzipain participates in the nutrition of the

parasite at the expense of the host, being the major proteinase of

the large acidic prelysosomal compartment called reservosomes.

Cruzipain also plays a role in the invasion of host cells by T. cruzi

trypomastigotes and participates in the escape mechanisms used

by the parasite to evade the immune system of the host [60,61].

Cruzipain has been shown to enhance IL-10 and TGF-b
production, favoring parasite survival in macrophages [62]. The

involvement of this protein in the capacity of T. cruzi to activate

TGF-b has already been proposed by us [8] and is under further

investigation in our laboratory. Additionally, our results showed

that TGF-b was also capable to stimulate in vitro amastigogenesis,

extending previous data which demonstrate that epimastigotes

overexpressing cruzipain have a higher rate of differentiation into

metacyclic forms [63].

The absence of classical signaling molecules found in our study

may be explained by the low abundance of these proteins, or due

to stoichiometry and kinetic factors of their phosphorylation, being

considered as a limitation of the chosen technique. However,

recently, combination of phosphopeptide enrichment approaches

with more sensitive mass spectrometry-based methodologies

[64,65] have been applied to the study of general protein

phosphorylation in T. cruzi at the epimastigote stage, enabling

the identification, quantification and description of site-specific

phosphorylation in this microorganism, but failing to identify any

of the classical TGF-b signaling molecules. Another hypothesis

suggests that TGF-b triggers alternative signaling routes in T. cruzi,

independent of the pathways already described in more complex

eukaryotes.

The idea of a signaling pathway triggered by TGF-b suggests

the presence of TGF-b receptor(s) on the T. cruzi cell surface in

order to initiate an intracellular cascade. However, no orthologs

and/or analogs of the canonical serine-threonine kinase TGF-b
receptors (TRI and TRII) have been found after in silico analysis of

the T. cruzi genome [12]. A molecular analysis of the probable T.

cruzi TGF-b receptor protein is under investigation in our

laboratory. It should be remarked that other mammalian growth

factors (namely epidermal growth factor and TGF-a) have been

shown to bind to an EGF-like receptor and induce signal

transduction events and cellular proliferation in T. cruzi axenic

amastigotes [66,67].

Protein phosphorylation is strongly associated with the processes

of cell signaling and development in eukaryotes. Post-transcrip-

tional modifications appear to be even more important for the

regulation of gene expression in the Kinetoplastids, since they lack

several transcriptional control mechanisms [36,68,69]. Besides the

quantity of information generated by a phosphoproteomic

approach, it is extremely challenging to connect the kinases to

their molecular targets. This challenge reflects both the complexity

and variety of functions played by these proteins and also the fact

that kinases usually exert their biological effects through the

simultaneous phosphorylation of different sites of a protein or in

multiple protein complexes. We have identified a series of proteins

responsive to TGF-b, but the interactions established among them

and their role in the signaling triggered by TGF-b remains to be

fully understood.

Although we could not determine a linked network between the

modulated proteins, the stimulation of epimastigote growth by

TGF-b may be partially attributed to positive regulation of

proteins like TRYP, tubulin, and TCTP, which have already been

described to participate in the process of proliferation and

prevention of apoptosis. These functions are compatible with

epimastigote biology in the bug’s crop following a blood meal, thus

suggesting that TGF-b may play an important role in these

Figure 8. Biological effects exerted by TGF-b over different
forms of T. cruzi. A. In vitro proliferation of epimastigotes.
Epimastigotes were grown in the absence or presence of TGF-b
(5 ng/ml, daily added) in LIT medium. The graph represents the mean
number of epimastigotes present in cultures treated or not with TGF-b
after 24, 48, 72 and 96 hours. N = 4. **p,0.01, ***p,0.001. B.
Amastigogenesis in vitro. Differentiation of trypomastigotes was
performed by acid induction followed or not by treatment with 5 ng/
ml of recombinant TGF-b 1. The graph represents the percentage of
differentiation into amastigote forms after 4 hours of acid induction
with or without TGF-b stimuli. N = 4. **p,0.01.
doi:10.1371/journal.pone.0038736.g008
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processes. In malaria, another parasitological disease, TGF-b
appears to have an essential role in the development of insect

immunity. It has been reported [70] that during blood meal, the

Anopheles mosquito vector ingests a variety of mammalian

signaling factors - including TGF-b - that can communicate with

immunological cells of the invertebrate host. This study demon-

strates that cytokine transmission is not only critical for Plasmo-

dium development in the vertebrate host, but can also influence

parasite development in the mosquito, thus indicating that through

a conserved immunological cross talk, mammalian and insect

immune systems interact with each other to influence the

Plasmodium life cycle.

In view of the important role of TGF-b during the parasite life

cycle and in development of infection, the present study

contributes for the elucidation of T. cruzi epimastigote proteins

that may be involved in many biological processes in which TGF-

b participates, such as invasion, proliferation, differentiation and

survival, thereby reinforcing the importance of this molecule in the

different forms and stages of the T. cruzi life cycle.
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Proteomic analysis of Trypanosoma cruzi resistance to Benznidazole. J Proteome
Res 7: 2357–2367.

41. Ulrich PN, Jimenez V, Park M, Martins VP, Atwood J III, et al. (2011)

Identification of Contractile Vacuole Proteins in Trypanosoma cruzi. PLoS ONE 6:
e18013.

42. Parsons M, Worthey EA, Ward PN, Mottram JC (2005) Comparative analysis of
the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypano-

soma brucei and Trypanosoma cruzi. BMC Genomics 6: 1–19.

43. Imamura T, Kanai F, Kawakami T, Amarsanaa J, Ijichi H, et al. (2004)
Proteomic analysis of the TGF-beta signaling pathway in pancreatic carcinoma

cells using stable RNA interference to silence Smad4 expression. Biochem
Biophys Res Commun 21: 289–296.

44. Wang D, Park JS, Chu JS, Krakowski A, Luo K, et al. (2004) Proteomic profiling
of bone marrow mesenchymal stem cells upon transforming growth factor beta1

stimulation. J Biol Chem 15: 43725–43734.

45. Young JC, Agashe VR, Siegers K, Hartl FU (2004) Pathways of chaperone-
mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 5: 781–791.

46. Bente M, Harder S, Wiesgigl M, Heukeshoven J, Gelhaus C, et al. (2003)
Developmentally induced changes of the proteome in the protozoan parasite

Leishmania donovani. Proteomics 3: 1811–1829.

47. Li Y, Kang X, Wang Q (2011) HSP70 decreases receptor-dependent
phosphorylation of Smad2 and blocks TGF-b-induced epithelial-mesenchymal

transition. J Genet Genomics 20: 111–116.
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