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This study reveals the presence of different carbapenemase genes (blaKPC, blaNDM, blaGES, and blaOXA48-like genes) detected di-
rectly from water samples and clonal dispersion (by pulsed-field gel electrophoresis [PFGE] and multilocus sequence typing
[MLST]) of KPC-2-producing Enterobacteriaceae in two important urban aquatic matrixes from Rio de Janeiro, Brazil, high-
lighting the role of aquatic environments as gene pools and the possibility of community spreading.

Until recently, the role of aquatic environments as antimicro-
bial resistance gene reservoirs has been overlooked. The con-

tamination of natural aquatic environments with resistance-car-
rying bacteria and ingestion of this water during the practice of
water sports could be an important route to spread resistance
genes (1–3).

The purpose of this study was to investigate the presence of
carbapenemase genes in the Rodrigo de Freitas Lagoon (RFL) and
the Carioca River (CR), two important aquatic environments in
Rio de Janeiro, Brazil. The RFL is an important landmark and an
area for sports and fishing activity. The CR begins in an area of
environmental preservation, runs underground through several
neighborhoods of Rio de Janeiro City, and finally flows into Fla-
mengo Beach on Guanabara Bay, where the presence of Entero-
bacteriaceae hosting blaKPC has been previously reported (4).

Superficial water samples (2 liters) were collected according to
American Public Health Association (APHA) methods (5) in
March 2013 from 4 points in the RFL (RFL1 to RFL4) and in July
2013 from five points in the CR (CR1 to CR5) (Fig. 1). According
to Brazilian standards (6, 7), all points from RFL water were con-
sidered unsuitable for bathing. At the first point of the CR (CR1),
which is a well-preserved area, the water was considered accept-
able and clear. However, along the river, the water quality de-
creased, suggesting the continuous discharge of sewage from
nearby houses and hospitals (CR2 and CR3). In CR4 (immediately
beyond the wastewater treatment plant [WWTP-FLOTFLUX]),
the water was considered acceptable, and at CR5, the water quality
decreased and was considered unacceptable because of its mixing
with seawater from Guanabara Bay (see Table S1 in the supple-
mental material).

In order to select carbapenemase-producing isolates, 100 �l of
concentrated water (centrifugation at 9,509 � g for 1 h at 4°C,
twice) was plated on Mueller-Hinton agar, glutamate starch agar
phenol red, and eosin-methylene blue agar (Oxoid) containing 2
mg/liter ceftazidime (Sigma-Aldrich) or 0.5 mg/liter ertapenem
(Merck Sharp and Dohme). Different morphotypes of Gram-neg-
ative organism CFU were selected from each medium and submit-
ted to the disk diffusion test for imipenem, meropenem, and er-
tapenem (Oxoid) (8, 9). The isolates exhibiting nonsusceptibility
to at least one carbapenem were submitted for detection of blaKPC

and blaNDM genes by conventional PCR and sequencing (10–12).
The KPC-positive isolates were identified by matrix-assisted laser
desorption ionization–time of flight (MALDI-TOF) mass spec-
trometry (Vitek MS; bioMérieux), and species of the Enterobacter
cloacae complex were identified by sequencing of the hsp60 gene
(13).

A total of 242 Gram-negative bacillus isolates were recovered
from the water samples, 132 from the RFL and 110 from the CR.
By the disk diffusion method, 110 isolates from the RFL (83.3%)
and 91 from the CR (82.7%) were considered nonsusceptible to at
least one carbapenem tested (Table 1).

The blaKPC and blaNDM genes were not detected in isolates re-
covered from the RFL, but in 33 isolates (13.6%) from the CR, the
blaKPC-2 gene was detected (23 isolates from CR2, 6 from CR3, and
4 from CR5). Seven isolates were identified as Klebsiella pneu-
moniae, one was identified as Klebsiella sp., three were identified as
Aeromonas punctata, one was identified as Aeromonas hydrophila,
and 21 were identified as belonging to the Enterobacter cloacae
complex: 12 classified as Enterobacter kobei, six classified as Entero-
bacter asburiae, and three classified as E. cloacae (Table 1).

Macrorestriction with XbaI digestion following pulsed-field
gel electrophoresis (PFGE) was used to determine the genetic re-
latedness of the blaKPC-2-positive isolates (14). Six clonal groups
were found among the K. pneumoniae isolates, two were found
among the A. punctata isolates, six were found among the E. kobei
isolates, one was found among E. asburiae isolates, and two were
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found among E. cloacae isolates. The clonal group EaA (E. asbur-
iae) was found in CR2 and CR3, and clonal groups EkA and EkC
(E. kobei) were detected in CR2 and CR5 (Table 2). The detection
of the same clonal group of E. kobei and E. asburiae at different
points of water collection shows the capacity of these clones to
persist and carry their genes along the river, even after passage
through the WWTP. The capacity of KPC-producing bacteria to

pass through a hospital WWTP has also been shown elsewhere
(15, 16).

By multilocus sequence typing (MLST) analysis, six sequence
types (STs) were found among K. pneumoniae isolates (Table 2).
Although we did not observe any of the STs previously described
in Brazilian hospitals in our samples, one isolate belonged to
ST1792 (clonal complex CC515), which is placed in the same evo-

FIG 1 Rodrigo de Freitas Lagoon and Carioca River in Rio de Janeiro, Brazil. Stars show the points of water collection.

TABLE 1 Bacterial isolates and carbapenemase genes recovered from each water collection point in Rodrigo de Freitas Lagoon and Carioca River,
Rio de Janeiro City

Collection
point

No. of isolates of carbapenemase-producing bacteria recovered
Carbapenemase gene(s) amplified from
water sample (CT)bTotal NS-Carbaa KPC producing (species)

RFL1 28 25 16S
RFL2 39 30 16S/blaNDM (25.53)
RFL3 27 24 16Sc/blaKPC

c (32.86)
RFL4 38 34 16S/blaGES-16

CR1 12 8 16Sc

CR2 37 33 23 (A. hydrophila, 1; A. punctata, 2; E. asburiae, 2; E. cloacae,
3; E. kobei, 8; K. pneumoniae, 6; Klebsiella sp., 1)

16S/blaKPC (24.08)/blaGES-16/blaOXA-48-like

CR3 23 21 6 (A. punctata, 1; E. asburiae, 4; K. pneumoniae, 1) 16S/blaKPC (24.85)/blaGES-16/blaOXA-48-like

CR4 3 0 16Sc/blaKPC
c (35.44)

CR5 35 29 4 (E. kobei, 4) 16S/blaKPC (30.71)/blaGES-16/blaOXA-48-like

a Nonsusceptible to at least one of the carbapenems tested (ertapenem, imipenem, and meropenem).
b Cycle threshold determined by real-time PCR.
c Genes amplified only by real-time PCR.
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lutionary branch as CC11 and CC258, both associated with the
spread of the blaKPC gene and previously described in Brazil (17).
Furthermore, it is interesting that ST1245, found in one isolate,
was first described in a KPC-2-producing isolate recovered from a
WWTP in Austria (18).

By conventional PCR and amplicon sequencing (blaIMP,
blaVIM, blaGES, blaSPM, blaOXA-48-like, blaOXA-23-like, blaOXA-51-like,
blaOXA-24-like, blaOXA-58-like, and blaOXA-143) (19–23), we detected
blaGES-16 in two KPC-2-producing K. pneumoniae isolates and in
one E. kobei isolate from point CR2. In water from this point, we
also detected an A. punctata isolate carrying blaOXA-370 and a new
blaGES-like variant named blaGES-31 (Table 2). The blaKPC and
blaGES-16 genes were previously reported in Brazilian recreational
waters (4). However, although blaOXA-370, an OXA-48-like family
member, had already been described in hospitals in Rio de Janeiro,
it had still not been detected in an aquatic environment (24).

According to antimicrobial susceptibility tests (Etest [AB Bio-
disk, Solna, Sweden] and the agar diffusion method [Oxoid]),
many of the KPC-producing isolates from the CR were resistant
only to �-lactams and presented MIC50s lower than those nor-
mally found in clinical isolates (17) (Table 2).

These antimicrobial susceptibility profiles associated with the
detection of blaKPC in different clonal groups of different species,
including environmental ones (A. punctata and A. hydrophila)
and an isolate of A. punctata harboring blaKPC-2, blaOXA-370, and

blaGES-31, highlight the role of aquatic environments as a genetic
library and disseminator of resistance genes.

In this way, we investigated the presence of carbapenemase
genes directly from concentrated water samples by conventional
PCR, sequencing as described above, and multiplex real-time PCR
using Mastermix NAT (Bio-Manguinhos, Fiocruz) and primers
and probes for blaNDM (VIC), blaKPC (6-carboxyfluorescein
[FAM]), and 16S rRNA (CY5), performed on the Applied Biosys-
tems 7500 real-time PCR system (Thermo Fisher Scientific) based
on the CDC protocol (25). The amplification of the 16S rRNA
gene was used to confirm the presence of bacterial DNA in water
samples (26).

By conventional PCR and sequencing, blaNDM and blaGES-16

could be amplified in RFL samples and blaKPC, blaOXA-48-like, and
blaGES-16 could be amplified in CR samples. Real-time PCR could
detect blaKPC and blaNDM from the same points as those found by
conventional PCR, but it was also able to detect blaKPC from points
RFL3 and CR4. These results suggest that even the operating
WWTP (CR4) is not sufficient to eliminate the carbapenemase
genes (Table 1).

This study evidenced the dissemination of different carbapen-
emase genes (blaKPC, blaNDM, blaOXA-370, and blaGES-16) in two
important aquatic environments in Rio de Janeiro, Brazil, high-
lighting the role of aquatic environments as gene pools and the

TABLE 2 Molecular characteristics of KPC-2-producing isolates from the Carioca River, Rio de Janeiro, Brazila

Collection
point and
identification

PFGE
profile ST �-Lactamase(s)

Nonsusceptibility profile by disk
diffusion test

MIC (�g/ml) by Etest

IPM MEM ETP TGC PMB

CR2
A. hydrophila KPC-2 CAZ, ATM, SXT, FOX, CTX, AMK, GEN 0.38 0.38 3 0.5 1
A. punctata ApA KPC-2, OXA-370,

GES-31
FEP, CAZ, ATM, FOX, CTX, AMK 6 24 24 0.5 1.5

E. cloacae EcA KPC-2 FEP, CAZ, ATM, FOX, CTX 12 �32 �32 0.5 0.32
EcB KPC-2 FEP, CAZ, ATM, FOX, CTX 3 1.5 4 0.75 0.38

E. asburiae EaA KPC-2 FEP, ATM, FOX, CTX 4 3 4 1 1
E. kobei EkA KPC-2 ATM, FOX, CTX 2 2 1.5 0.38 0.38

EkB KPC-2 FEP, CAZ, ATM, FOX 6 �32 8 1 0.38
EkC KPC-2 CAZ, ATM, FOX, CTX 2 1.5 8 0.75 1
EkD KPC-2 CAZ, ATM, FOX, CTX 8 �32 �32 0.38 0.5
EkE KPC-2, GES-16 FEP, CAZ, ATM, FOX, CTX, GEN 6 12 32 0.75 1

K. pneumoniae KpA 1792 KPC-2 ATM, FOX 1 0.75 1 0.75 0.5
KpB 1791 KPC-2 ATM 1 1.5 8 0.75 0.38
KpC 1245 KPC-2 FEP, CAZ, ATM, CTX 12 32 �32 0.75 0.5
KpE 1793 KPC-2, GES-16 FEP, CAZ, ATM, SXT, FOX, CTX 12 12 8 1 0.38
KpF 1794 KPC-2, GES-16 FEP, CAZ, ATM, CTX 1.5 1 3 0.5 0.38

Klebsiella sp. KPC-2 FEP, CAZ, ATM, FOX, CTX �32 �32 �32 0.125 0.5

CR3
A. punctata ApB KPC-2 FEP, CAZ, ATM, FOX, CTX 3 4 16 0.5 0.38
E. asburiae EaA KPC-2 FEP, CAZ, ATM, FOX, CTX 2 3 �32 0.5 0.38
K. pneumoniae KpD 1795 KPC-2 FEP, CAZ, ATM, CTX 4 24 16 0.75 0.5

CR5
E. kobei EkA KPC-2 FEP, ATM, FOX, CTX 3 1 3 0.5 0.38

EkC KPC-2 FEP, CAZ, ATM, CTX 2 2 8 0.75 0.5
EkF KPC-2 FEP, CAZ, ATM, FOX, CTX 1.5 1 8 0.5 0.38

a Isolates without repeating of clonal group and sequence type that were recovered at the same point. Abbreviations: ST, sequence type; FEP, cefepime; CAZ, ceftazidime; ATM,
aztreonam; SXT, trimethoprim-sulfamethoxazole; FOX, cefoxitin; CTX, cefotaxime; AMK, amikacin; GEN, gentamicin; IPM, imipenem; MEM, meropenem; ETP, ertapenem;
TGC, tigecycline; PMB, polymyxin B.

de Araujo et al.

4382 aac.asm.org July 2016 Volume 60 Number 7Antimicrobial Agents and Chemotherapy

http://aac.asm.org


possibility of community spread. However, more studies are
needed to determine the real risk to public health.

Nucleotide sequence accession number. The sequence for
blaGES-31 has been deposited in GenBank under accession number
KX034181.
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