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Vascular disorders have a direct link tomortality in the acute phase of Trypanosoma cruzi infection. However, the
underlying mechanisms of vascular dysfunction in this phase are largely unknown. We hypothesize that T. cruzi
invades endothelial cells causing dysfunction in contractility and relaxation of the mouse aorta. Immunodetection
of T. cruzi antigenTcRBP28wasobserved in endothelial cells. Therewas adecreasedendothelial nitric oxide synthase
(eNOS)-derivedNO-dependent vascular relaxation, and increased vascular contractility accompaniedby augmented
superoxide anions production. Endothelial removal, inhibition of cyclooxygenase 2 (COX-2), blockade of thrombox-
ane A2 (TXA2) TP receptors, and scavenger of superoxide normalized the contractile response. COX-2, thromboxane
synthase, inducible nitric oxide synthase (iNOS), p65 NFκB subunit and p22phox of NAD(P)H oxidase (NOX) subunit
expressions were increased in vessels of chagasic animals. Serum TNF-αwas augmented. Basal NO production, and
nitrotyrosine residue expressionwere increased. It is concluded that T. cruzi invadesmice aorta endothelial cells and
increases TXA2/TP receptor/NOX-derived superoxide formation. Alongside, T. cruzi promotes systemic TNF-α
increase,which stimulates iNOS expression in vessels andnitrosative stress. In light of the heart failure that develops
in the chronic phase of the disease, to understand themechanism involved in the increased contractility of the aorta
is crucial.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

The agent of Chagas' disease Trypanosoma cruzi affects millions of
people in rural areas of Central and South America, with great economic
burden [1]. Infecting parasites or trypomastigotes, by entering the
bloodstream, infect a wide range of susceptible host cells such as
macrophages [2,3], cardiomyocytes [4], skeletal [5] and smooth muscle
cells [6,7], human endothelial cell lines such as HUVEC and EAhy926
[8–10].

The acute phase of Chagas' disease is characterized by high levels of
parasitemia, fever, lymphadenopathy and hepatosplenomegaly [10].
Despite the absence of cardiac remodeling and heart failure in this
phase, some studies showed the existence of myocarditis, increased
platelet aggregation,fibrinmicrothrombi formation, spasmand vasculitis
of coronary microcirculation [4,10,11].
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In the chronic phase, there is activation of the acquired immunity
leading to a gradual reduction in parasitemia [10,12,13]. In some
patients the low-grade of infection masks the symptoms for many
years (silent infection). Differently from the asymptomatic patients,
about 30% of symptomatic patients show a progressive active chagasic
cardiomyopathy associated with cardiomegaly and disturbance in
heart rhythm [12,14], increasing morbidity and mortality.

While the cardiac manifestations of Chagas' disease are well known,
the involvement of the vasculature in its pathogenesis is commonly
neglected. Some studies suggested that inflammation of cardiac
microvessels related to T. cruzi infection induces the synthesis of several
pro-inflammatory cytokines, vascular adhesion molecules and some
vasoactive molecules such as endothelin (ET-1) and thromboxane A2

(TXA2) [15–17]. Moreover, vasculitis [18] and structural changes of
the aorta endothelial layer were reported in the acute phase of Chagas'
disease [19]. The vascular function of vessels removed from animals
infected with T. cruzi is so far unknown.

Aortic pulse-wave velocity has been shown to be associated with
cardiovascular risk [20]. Moreover, aortic stiffness has been shown as
an independent predictor of all-cause and cardiovascular mortality
[21]. Therefore, the study of aorta function of animals infected with
ction in acute phase of Trypanosoma cruzi infection in mice, Vascul.
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T. cruzi is crucial. Thus, the aim of the present study was to investigate
the reactivity of the aorta during the acute phase of Chagas' disease
and the underlying mechanism.

2. Methods

2.1. Animals

All animal procedures were performed according to the Guidelines
for the Care and Use of Laboratory Animals of the National Institutes
of Health (United States), as well as, the guidelines for the humane
use of laboratory animals at our Institute. These studies were approved
by the ethics committee of the Federal University of Minas Gerais
(UFMG; protocol # 72/2010). Male C57bl/6mice were used. All animals
were obtained fromRene Rachou Research Center (CPqRR-Fiocruz; Belo
Horizonte, MG, Brazil) and maintained in the animal facilities of the
Cellular andMolecular Parasitology Laboratory. Free accesswas allowed
to standard diet and filtered water was supplied ad libitum. All
mice were maintained at five per cage and in a constant temperature
(24 ± 2 °C), with a 12-h dark/light cycle.

2.2. Protocol of infection

Animals (eight-week-old) were infected intraperitoneally with 50
bloodstream trypomastigote forms of Colombian T. cruzi strain [22],
which was maintained by serial passages. Animals were sacrificed
30 days post-infection, and the aorta and serum were collected.

2.3. Vascular function studies

Experiments to assay vascular function were performed in an organ
bath system, as previously described [23]. Briefly, thoracic aortic rings
(3–4 mm length) from infected and control mice were obtained,
mounted in an organ bath system containing Krebs–Henseleit solution
(in mmol·L−1: 110.8 NaCl, 5.9 KCl, 25.0 NaHCO3, 1.07 MgSO4, 2.49
CaCl2, 2.33 NaH2PO4 and 11.51 glucose, pH 7.4), for 60 min. Concen-
tration–response curves to acetylcholine (ACh) were constructed in
vessels pre-contracted to the same tension level (approximately
2.5 mN·mm−1) with submaximal concentrations of phenylephrine
(0.03–0.1 μmol·L−1). Vascular contractions were evaluated by
concentration–response curves to phenylephrine. When necessary,
some vessels were incubated for 20 min with the indicated drugs before
the construction of curves.Mechanical activitywas recorded isometrically
by a force transducer (World Precision Instruments, Inc.) connected to an
amplifier-recorder (Model TBM-4;World Precision Instruments, Inc.) and
to a personal computer equipped with an analog-to-digital converter
board (DI-720; Dataq Instruments, Inc.), using Windaq data acquisition/
recording software (Dataq Instruments, Inc.).

2.4. Superoxide and nitric oxide detection

Superoxide anions and nitric oxide (NO) production weremeasured
by fluorescence microscopy, in aortic rings [24]. For superoxide
measurements, the rings were incubated for 20 min at 37 °C in
Krebs–Henseleit solution containing or not 10 μmol·L−1 tiron, a super-
oxide scavenger (Merck-Millipore, USA). Then, the superoxide sensitive
dye dihydroethidium (DHE; 10 μmol·L−1; Invitrogen, USA), was added
for 30 min, protected from light. After that, the excess of dye was
washed out, the rings were embedded in Tissue-Tek® O.C.T.™ freezing
medium (Sakura®, USA) and quickly frozen in liquid nitrogen. For NO
measurements, aortic rings were incubated for 20 min at 37 °C in
Krebs–Henseleit solution containing or not 10 μmol·L−1 of the iNOS
inhibitor N(6)-(1-iminoethyl)-l-lysine dihydrochloride (L-NIL;
Merck-Millipore, USA). The intracellular NO sensitive dye 4-amino-
5-methylamino-2′,7′-difluorescein diacetate (DAF-FM; 10 μmol·L−1;
Invitrogen, USA) was added for 30 min, protected from light. After
Please cite this article as: J.F. Silva, et al., Mechanisms of vascular dysfun
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washing, ringswere frozen, as described above. Frozen ringswere sliced
in a cryostat (10 μm; Leica 1850, Leica, USA) andmounted in slideswith
DAPI/antifade-containing medium (Santa Cruz Biotechnology, USA).
Slides were imaged with an inverted fluorescence microscope (Eclipse
Ti, Nikon, USA). Fluorescence intensity (Ex/Em: 518/605 and 495/515,
to DHE and DAF-FM, respectively) was calculated from at least 8 fields
from 4 different experiments using ImageJ software (NIH, USA).

2.5. Determination of tumoral necrosis factor alpha (TNF-α) in serum by
ELISA

Bloodwas collected during the sacrifice and the serumwas separated
by centrifugation (1500×g for 10min). Quantification of TNF-α levelwas
performed by the use of colorimetric kits (R&D Systems). The concentra-
tion of TNF-α in each sample was determined by a standard curve with
known concentrations of TNF-α.

2.6. Western-blot analysis

Western blot was performed as previously described [25] with some
modifications. Briefly, the frozen aorta segments (~50 mg) were
homogenized in lysis buffer (in mmol·L−1): 150 NaCl, 50 Tris–HCl,
5 EDTA.2Na, and 1 MgCl2 containing 1% Triton X-100 and 0.5% SDS
plus protease inhibitors (SigmaFAST; Sigma-Aldrich, MO, USA).
Equal amounts of proteins (30 μg) were denatured and separated in
denaturing SDS/7.5% polyacrylamide gel. Proteins were transferred onto
a polyvinylidene fluoride membrane (Immobilon-P; Millipore, MA).
Blots were blocked at room temperature with 5% BSA in TBS enriched
with 0.1% Tween 20 before incubation with rabbit polyclonal anti-eNOS
(1:1000; Sigma-Aldrich), goat polyclonal anti-phospho-eNOSSer1177

(1:1000; Santa Cruz Biotechnology, Santa Cruz, CA, USA), goat polyclonal
anti-phospho-eNOSThr495 (1:1000; Santa Cruz Biotechnology), mouse
monoclonal anti-iNOS (1:2000; Santa Cruz Biotechnology),mousemono-
clonal anti-nitrotyrosine (1:2000; Santa Cruz Biotechnology), mouse
polyclonal anti-COX-2 (1:1000; Cayman Chemical), mouse monoclonal
anti-NADPH p-22phox (1:1000; Santa Cruz Biotechnology), rabbit poly-
clonal anti-thromboxane synthase (1:500; Abcam, Cambridge,UK), rabbit
polyclonal anti-NF-κB p65 (1:1000; Santa Cruz Biotechnology), mouse
monoclonal anti-β-actin (1:8000; Santa Cruz Biotechnology) or mouse
monoclonal anti-GAPDH (1:8000; Santa Cruz Biotechnology), at room
temperature. The immunocomplexes were detected by chemilumines-
cent reaction (ECL Plus kit; Amersham, Les Ulis, France) followed by
densitometric analyzes with software ImageJ.

2.7. T. cruzi immunostaining

T. cruzi localization was performed in aortic rings (3–4 mm length)
by immunofluorescence. Aortic rings were collected as described
above, washed in Krebs–Henseleit solution, imbibed in Tissue-Tek®
O.C.T.™ freezing medium (Sakura®, USA) and quickly frozen in liquid
nitrogen. Frozen rings were sliced in a cryostat (10 μm; Leica 1850,
Leica, USA), fixed and permeabilized with cold acetone and 0.5% Triton
X-100 (in PBS, pH7.4). After block procedure (5% bovine serumalbumin
in PBS), slices were incubated with mouse polyclonal antibody against
T. cruzi antigen TcRBP28 [26], followed by Alexa Fluor 647 donkey
anti-mouse (Invitrogen, USA, OR). Slides were mounted with DAPI/
antifade-containing medium (Santa Cruz Biotechnology) and imaged
in an inverted fluorescence microscope (Eclipse Ti, Nikon, USA) at Ex/
Em: 495/515 and 647/665, to elastin and TcRBP28, respectively.

2.8. Data analysis

Results are expressed asmean±SEM. Two-wayANOVAwas used to
compare concentration–response curves. Student's t-test was used in the
other experiments. All statistical analyzes were considered significant
when p b 0.05.
ction in acute phase of Trypanosoma cruzi infection in mice, Vascul.
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3. Results

Investigation of vascular function showed a reduced endothelium-
dependent vasodilation evocated by ACh in aortas from mice acutely
infected with T. cruzi (Fig. 1A). Analysis of NO/NOS signaling
pathway showed that non-selective NOS inhibition with L-NAME
(300 μmol·L−1), inhibited ACh-induced vasodilation in both groups
(Fig. 1B). This result suggests that NO is the main endothelial-derived
relaxing factor in the mice aorta from control and chagasic mice.
However, the area under the curve (A.U.C.) is reduced in vessels from
infected mice, and indicates an impairment of ACh-stimulated NO pro-
duction in aorta from chagasic mice (Fig. 1C). Evaluation of the relative
contribution of NOS to ACh-dependent relaxation in both groups was
calculated by the difference of the A.U.C. (Δ A.U.C.) in the presence and
the absence of L-NAME (Fig. 1D). This result suggests a reduction of
eNOS expression and/or functioning in T. cruzi-infected vessels. Western
blot experiments showed that total eNOS expression was reduced in the
aorta from chagasic mice (Fig. 2A). Moreover, T. cruzi infection induced
a reduction in eNOS functioning characterized by reduced phos-
phorylation of the activation site of the enzyme eNOSSer1177 (Fig. 2B)
and increased phosphorylation in the inactivation site of eNOSThr495

(Fig. 2C).
The vascular contractility was also analyzed. The phenylephrine-

induced contraction in endothelium-intact aortic rings from chagasic
mice was augmentedwhen compared to controls (Fig. 3A). Endothelium
removal restored the contractile response in chagasic group to the same
level measured in control vessels (Fig. 3A). These data suggest that
increased contractility in infected mice was probably caused by an
endothelial factor.

A common intracellular signaling pathway activated by T. cruzi
infection is mediated by activation of ET-1 receptors [17]. To test
Fig. 1. Vascular relaxation induced by acetylcholine (ACh) (A) in the presence and in the abse
mean ± S.E.M. n = 5; ***p b 0.001 by two-way ANOVA. Area under the curve (A.U.C.) of the
presence of L-NAME (D). Data are expressed as mean ± S.E.M. n = 5; **p b 0.01 an
chagasic + L-NAME vs chagasic, one-way ANOVA with Newman–Keuls post hoc test.
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the possible participation of ET-1 on the increased vascular contrac-
tility, we used a non-selective antagonist of ET-1 receptors, bosentan
(10 μmol·L−1). Bosentan did not modify the contractile response in
both groups (Fig. 3B).

Thromboxane A2 (TXA2) production by T. cruzi and/or host cell has
been implicated in cardiovascular dysfunction in Chagas' disease [15].
To evaluate the role of TXA2 in endothelial dysfunction in chagasic
mice aorta, the TXA2 receptor antagonist SQ29548 (1 μmol·L−1), the
non-selective cyclooxygenase (COX) inhibitor ibuprofen (1 μmol·L−1)
and a selective inhibitor of cyclooxygenase 2 (COX-2) etoricoxib
(1 μmol·L−1), were used. Pre-incubation of vessels with SQ29548,
ibuprofen or etoricoxib normalized the contractile response to phenyl-
ephrine in chagasic vessels to the level of controls (Fig. 3C, D and E).

To evaluate the possibility of a direct infection of endothelial cells by
T. cruzi, we performed immunostaining experiments to localize the
parasite in the arterial wall. The immunodetection of T. cruzi antigen
TcRBP28 showed that endothelial cells but not smooth muscle cells
were infected with the parasite (Fig. 4).

TNFα is a proinflammatory cytokine produced systemically during
the acute phase of Chagas' disease [10]. TNFα is an important inducer
of NF-κB consequently leading to the transcription of genes including
COX-2 [27] and thromboxane synthase [28]. ELISA assay using serum
showed a large increase in TNF-α concentration in infected mice (Fig.
5A).Moreover, ourWestern blot experiments corroborate our functional
data. As shown in Fig. 5B–D there were increases in expression of p65
subunit of NF-κB, COX-2 and thromboxane synthase in aortas from
chagasic mice. Expression of COX-1 was not modified (Fig. 5E).

NF-κB also activates transcription of iNOS gene [29], which produces
massive amounts of NO [30]. Therefore, we next evaluated if iNOS
interferes with contractile function during acute infection by T. cruzi.
Selective inhibition of iNOS with L-NIL (10 μmol·L−1) did not change
nce of L-NAME (300 μmol·L−1) in control and chagasic aortas (B), Data are expressed as
effect of ACh (C). Difference of A.U.C. (Δ A.U.C.) between the curves in the absence and
d ***p b 0.001 chagasic vs control or control + L-NAME vs control. ###p b 0.001
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Fig. 2. Western blot analysis of total eNOS (A) and acetylcholine-induced changes in the
phosphorylation status of eNOSSer1177 (B) and eNOSThr495 (C) in the aortas from control
and infected mice stimulated with acetylcholine. The vessels were stimulated with ACh
(100 μmol·L−1). Images are representative blots from three separate experiments. Bar
graphs represent mean ± S.E.M. *p b 0.05 and **p b 0.01 by Student's t-test.

4 J.F. Silva et al. / Vascular Pharmacology xxx (2016) xxx–xxx
contractile response to phenylephrine in control vessels. However,
L-NIL increased vasoconstrictor response in infected mice (Fig. 6A).
In addition, as seen in Fig. 6B, there was a strong increase in iNOS
expression in vessels from chagasic mice. Moreover, measurements of
basal NO production by fluorescence microscopy using DAF confirmed
that smooth muscle cells from chagasic mice produce large amounts
of NO (Fig. 6C). Inhibition of iNOS with L-NIL (10 μmol·L−1) restored
NO levels to the same values of control vessels (Fig. 6C). Corroborating
with this result, chagasic mice presented high levels of nitrotyrosine, a
marker of protein nitrosylation by NO or peroxynitrite (Fig. 6D).

Inflammatory diseases have been associatedwith vascular superoxide
production and induction of oxidative stress [31,32]. Pre-incubation of
vessels with tiron (10 μmol·L−1; Fig. 7A) a superoxide scavenger, and
superoxide dismutase (SOD; 300 IU·mL−1; Fig. 7B), normalized the
Please cite this article as: J.F. Silva, et al., Mechanisms of vascular dysfun
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contraction of chagasic mice to the same level of controls. Tiron and
SOD did not modify the contraction in the control mice (Fig. 7A and B).
Analysis of superoxide production by fluorescence microscopy using
DHE staining confirmed that aorta from chagasic mice presented higher
levels of superoxide compared to those of controls that were normalized
by tiron treatment (Fig. 8). Finally, the subunit p22phox of NAD(P)H
oxidase (NOX) expression was increased (Fig. 7C).

4. Discussion

Cardiovascular studies on Chagas' disease are commonly related to
cardiac adaptations during the chronification process. Although the
involvement of vasculature is recognized to contribute to the patho-
genesis of chagasic disease, the mechanisms involved in vascular
dysfunction, mainly in the acute phase, is largely unknown. Moreover,
most studies have focused on heart microvasculature. In view of the
acute myocarditis and chronic cardiomyopathy caused by infection
with T. cruzi, investigation of modifications of aorta function might be
relevant to a better understanding of this fatal disease. In this study,
we provide a detailed characterization of the underlying mechanisms
of aorta dysfunction associated with Chagas' disease.

We showed here that aorta contractility was importantly increased
in chagasic mice. Cellular invasion by T. cruzi represents an important
event in the pro-inflammatory process involved in the progression of
Chagas' disease [33]. Cultured endothelial and smooth muscle cells are
known to be infected by T. cruzi [6–10]. In the present study, we show
that the parasite invades endothelial but not smooth muscle cells from
mouse aorta. TcRBP28 is an antigen present in the cytoplasm of cells
infectedwith T. cruzi [26]. The immunostaining of TcRBR28 in the endo-
thelial layer of the aortas of infected mice suggests that this event may
be involved in the induction of the vascular dysfunction in the acute
phase of the disease. It is known that after cell invasion the rate of
TXA2 production greatly increases [15]. TXA2, the most potent vasocon-
strictor known, is the predominant eicosanoid present in all life stages
of T. cruzi, suggesting that TXA2-TP signaling plays an important role
in Chagas' disease [34]. Here we have shown that endothelial removal
or pre-treatment of the vessels with ibuprofen (a non-selective COX
inhibitor), etoricoxib (a selective COX-2 inhibitor) and SQ29548 (a TXA2

receptor antagonist) restored the contractile response to the level found
in controls. Moreover, p65 NF-κB subunit, COX-2 and thromboxane
synthase expression levels were increased in infected vessels. Taken
together, these data are in line with the hypothesis that T cruzi infection
induces the expression of NFκB, which prompts to the expression of
COX-2 [27] and thromboxane synthase [28], finally increasing the endo-
thelial production of TXA2 and vascular contraction.

ET-1 is a powerful vasoconstrictor secreted by endothelial cells,
which is known to be increased after T. cruzi infection as well [35].
Despite the deleterious effects of large amounts of ET-1, especially
inducing contraction in coronary arteries, ET-1 contributes to the early
control of parasitemia [36]. Our results showed that ET-1 is not involved
in the increasedvasoconstriction in aortas fromchagasicmice, suggesting
that themechanisms involved in vascular dysfunction in the acute phase
of Chagas' disease may be different depending on the type of vessel
studied.

Acute Chagas' disease has been associatedwith reactive oxygen spe-
cies (ROS) formation [37]. To investigate whether the aorta of infected
mice had increased production of ROS and whether they interfere
with vascular function, a series of experimental protocols were per-
formed. Our fluorescent experiments using the fluorescent dye DHE
showed an important increase in superoxide anions formation in aortic
rings sections from infectedmice. In addition,Western blot experiments
showed an increase in nitrotyrosine residues in vessels from infected
mice. Finally, pre-incubation of aortic rings with tiron (a superoxide
anion scavenger) or SOD, which dismutates superoxide into H2O2 and
water, normalized contractile response of infected vessels to the level
of controls, similarly to COX-2 and TXA2-receptor blockade. NOX
ction in acute phase of Trypanosoma cruzi infection in mice, Vascul.
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Fig. 3. The contraction induced by phenylephrine (Phen) is increased in chagasic vessels with endothelium (E+). Endothelium removal (E−) restored contraction to the same level of
control without endothelium (A). Blockade of endothelin receptors with bosentan (10 μmol·L−1) did not change Phen-induced contraction in both groups (B). Blockade of
thromboxane A2 receptors with SQ29548 (1 μmol·L−1) (C), cyclooxygenase inhibition with ibuprofen (1 μmol·L−1) (D) and type 2 cyclooxygenase selective inhibition with etoricoxib
(1 μmol·L−1) (E) normalized the vascular contraction elicited by Phen in chagasic vessels. Data are expressed as mean ± S.E.M. n = 5; ***p b 0.001 by two-way ANOVA.
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importantly contributes to the production of ROS in vessels [38,39]. Re-
cently, it was shown that TP receptors stimulation by TXA2 increased
NOX-dependent superoxide and peroxynitrite production in aortic endo-
thelial cells [40]. Herewe showed that the aortas of infectedmice have an
increase in the p22phox regulator of NOX1, an important NOX subunit
expressed in vessels [41]. Therefore, together these results indicate that
in aorta, TXA2/TP receptor-derived ROS account for the increased contrac-
tility found in vessels of infected mice.

Besides the increase in ROS, acute Chagas' disease is also associated
with systemic inflammation [42] and increase in nitric oxide (NO) for-
mation [43]. It is a consensus in the literature that, under physiological
conditions, eNOS is the major source of NO in vessels [44,45]. However,
in some pathological conditions, especially inflammation, iNOS may be
expressed and produces large amounts of NO [46,47]. The cytokine
TNF-α has been shown to play a major role in driving the expression
Please cite this article as: J.F. Silva, et al., Mechanisms of vascular dysfun
Pharmacol. (2016), http://dx.doi.org/10.1016/j.vph.2016.03.002
of iNOS in inflammatory states. In line with this proposal, the level of
TNF-α in the serum of our infected mice was extremely high compared
to controls, which is consistent with the occurrence of systemic in-
flammation. Moreover, there was increased iNOS expression and en-
hanced basal NOproduction in infectedmouse aorta. The increase in NO
and superoxide production are in agreement with the nitrosative stress
found in this work.

It is important to note that although NO production by infected
vessels under basal conditions is considerable high in infected mice,
there was a reduced NO-dependent vascular relaxation in chagasic
mice. Our Western blot experiments that showed decreased eNOS
expression and functioning corroborate to the above results. TNF-α is
known to reduce eNOS expression [48]. Moreover, it is well established
that ROS uncouple eNOS [21,49,50]. Of note, it was reported that
activation of NOX by TXA2 TP receptor uncouples eNOS [40]. Finally,
ction in acute phase of Trypanosoma cruzi infection in mice, Vascul.
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Fig. 4. Representative immunostaining against the parasite antigen TcRBP28 (n = 4). Green: elastin; red: T. cruzi antigen TcRBP28; blue: nuclei staining with DAPI. Arrows indicate
endothelial layer. Bar scale = 50 μm.
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up-regulation in NO/iNOS production can also contribute to uncouple
eNOS via activation of arginase-1 consequently lowering L-arginine con-
centration [51]. Hence, it is likely that increased serum TNF-α production
Fig. 5. TNF-α concentration is increased in the serum of infected mice (A). Western blot analys
(D) and cyclooxygenase 1 (COX-1; E) in aortas from control and infected mice. Images are re
*p b 0.05, **p b 0.01 and *** p b 0.001 by Student's t-test.
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in association with TXA2 and iNOS-mediated oxidative and nitrosative
stress found in the present study might account for eNOS-related
decreased vascular relaxation in T. cruzi-infected mice.
is of total p65 subunit of NF-κB (B), cyclooxygenase 2 (COX-2; C), thromboxane synthase
presentative blots from four separate experiments. Bar graphs represent mean ± S.E.M.
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Fig. 6. Contractile effect of phenylephrine in vessels from the control and infectedmice in the absence and the presence of L-NIL (10 μmol·L−1) (A). Western blot analysis of total iNOS in
aortas from control and infected mice (B). Fluorescence detection of NO in aortic rings sections from control and infectedmice in the presence and in the absence of L-NIL (10 μmol·L−1)
(C). Western blot analysis of nitrotyrosine residues in vessels from the control and infected mice (D). Data from contraction curve are expressed as mean ± S.E.M. n= 5; **p b 0.01 and
***p b 0.001 by two-way ANOVA. Western blot images are representative blots from four separate experiments. Bar graphs represent mean ± S.E.M. **p b 0.01 and *** p b 0.001 by
Student's t test. Fluorescence images are representative of five animals for each group. Bar graph shows the mean ± S.E.M of the fluorescence intensity. Green: DAF; blue: nuclei
staining with DAPI. ***p b 0.001 chagasic vs control; ###p b 0.001 chagasic vs chagasic + L-NIL by one-way ANOVA with Newman–Keuls post hoc test.

Fig. 7. The superoxide scavenger Tiron (10 μmol·L−1) (A) and superoxide dismutase (SOD; 300 IU·mL−1) (B) normalized phenylephrine-induced contraction from chagasic mice aortas.
Datawere expressed asmean±S.E.M. n=5; ***pb 0.001 by two-wayANOVA.Western blot analysis of p22phox in the aortas from control and infectedmice. Bar graphs representmean±
S.E.M. *p b 0.05 by Student's t-test.
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Fig. 8. Fluorescence detection of superoxide anions in aortic rings sections from control and infected mice in the presence and the absence of tiron (10 μmol·L−1). Bars graph shows the
mean± S.E.M of the fluorescence intensity (A). Fluorescence images are representative of five animals for each group (B). Red: DHE; blue: nuclei stainingwith DAPI. ***p b 0.001 chagasic
vs control; ###p b 0.001 chagasic vs chagasic + tiron by one-way ANOVA with Newman–Keuls post hoc test.

8 J.F. Silva et al. / Vascular Pharmacology xxx (2016) xxx–xxx
Clearly our data show a dysfunction in contractility and relaxation of
themouse aorta. Vascular dysfunction is a common problem associated
with hypertension [52]. However, the relationship between Chagas' dis-
ease and high blood pressure remains controversial. Although several
reports mentioned that the frequency of hypertension in patients with
Chagas' disease is similar to that described in general populations [53,
54], a study performed by Vicco et al. (2014), showed that the incidence
of high blood pressure was higher in the patients with Chagas' disease
compared with the control group [55].

The increase in NO bioavailability, ROS production and generation of
proinflammatory cytokines represent a common host defense mech-
anism against the proliferation of several pathogens. Therefore, this
defense mechanism is useful to the immune response in several
infectious diseases such as Chagas [43], dengue [56], leishmaniasis
[57] and malaria [58]. In addition, it has been reported that, Leishmania
donovani, the etiological agent of visceral leishmaniasis disease, also
invades cultured endothelial cells. However, contrary to themechanism
described in this work, L. donovani increases the synthesis of ceramide,
which leads to a decrease in endothelial-derived NO production and
activation of NADPH oxidase [57]. Because the literature is scarce, further
studies are necessary to clarify the mechanisms involved in vascular
dysfunction in infectious diseases. However, so far, it is likely that
although some aspects of the host defense in several infectious disorders
are similar, themechanism proposed in this work involving COX-2/TXA2/
receptor TP in themouse aorta, seems to be particular for Chagas' disease.

In conclusion, in this paper we present consistent evidence showing
that acute T. cruzi infection induces systemic and vascular inflammations
that change vascular function. The parasite enters the vascular endothelial
cell, causing an increase in COX-2/TXA2/TP receptor/superoxide local
signaling. Systemically the parasite provokes an increase in the levels of
TNF-α, which induces iNOS expression in the vessels of infected mice.
Please cite this article as: J.F. Silva, et al., Mechanisms of vascular dysfun
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iNOS produces large amounts of NO that along with TXA2/TP
receptor-mediated superoxide formation, provoke oxidative stress,
eNOS uncoupling and consequent decrease in aorta relaxation and in-
crease in contractility. The rise in serum TNF-α might also exacerbate
the endothelial increase in COX-2/TXA2/TP/superoxide signaling. The
comprehension of the mechanism involved in the aorta dysfunction is
crucial in light of the augmentation of cardiac afterload, which could
participate in the onset of heart failure and aggravate its consequences,
and contribute to increase morbidity and mortality during the progres-
sion of Chagas' disease.
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