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Abstract
RNA-binding proteins (RBPs) are key regulators of 
gene expression. There are several distinct families of 
RBPs and they are involved in the cellular response 
to environmental changes, cell differentiation and cell 
death. The RBPs can differentially combine with RNA 
molecules and form ribonucleoprotein (RNP) complexes, 
defining the function and fate of RNA molecules in the 
cell. RBPs display diverse domains that allow them to be 

categorized into distinct families. They play important 
roles in the cellular response to physiological stress, 
in cell differentiation, and, it is believed, in the cellular 
localization of certain mRNAs. In several protozoa, a 
physiological stress (nutritional, temperature or pH) 
triggers differentiation to a distinct developmental stage. 
Most of the RBPs characterized in protozoa arise from 
trypanosomatids. In these protozoa gene expression 
regulation is mostly post-transcriptional, which suggests 
that some RBPs might display regulatory functions 
distinct from those described for other eukaryotes. 
mRNA stability can be altered as a response to stress. 
Transcripts are sequestered to RNA granules that 
ultimately modulate their availability to the translation 
machinery, storage or degradation, depending on 
the associated proteins. These aggregates of mRNPs 
containing mRNAs that are not being translated coloc-
alize in cytoplasmic foci, and their numbers and size 
vary according to cell conditions such as oxidative stress, 
nutritional status and treatment with drugs that inhibit 
translation. 
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Core tip: RNA-binding proteins (RBPs) are numerous 
and widely distributed in nature. In addition to having 
different domains, these proteins are key modulators of 
gene expression and are involved in the cellular response 
to environmental changes, cell differentiation and cell 
death. In protozoa RBPs are crucial for the rapid gene 
expression remodeling that occurs in the course of cell 
differentiation or the stress response. 
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INTRODUCTION
RNA-binding proteins (RBPs) are numerous and widely 
distributed in nature and are involved in gene expression 
control at all levels. There are several distinct families of 
RBPs. They are key modulators of gene expression and 
are involved in the cellular response to environmental 
changes, cell differentiation and cell death. The RBPs 
can differentially combine with RNA molecules and form 
ribonucleoprotein (RNP) complexes, thereby defining 
the function and fate of the RNA molecules within the 
cell. 

RBPs and the RNA-binding domains 
RBPs have multiple and diverse domains; many of 
them have a combinatorial set of RNA-binding domains 
(RBDs) that allow various modes of recognition to 
exert their function in the cell. The RBD recognizes and 
interacts with the RNA molecule based on sequence 
and/or structure. In addition to the RBD domain, many 
of the RBPs also have protein-protein domains that 
form complexes that are also subjected to intense post-
translational modifications, such as methylation and 
phosphorylation, further increasing the complexity of 
the study and characterization of RBPs. 

One of the most common domains found in RBPs is 
the RNA-recognition motif (RRM); it shows affinity with 
single-stranded RNA, DNA and proteins. Approximately 
90 amino acid residues are involved in the recognition 
and binding of a target RNA sequence of 2 to 6 nucleo-
tides. The proteins that contain this domain are involved 
in all pathways of the RNA cycle, from splicing to mRNA 
turnover. The RRM is usually present in multiple copies 
within a protein, and this multiplicity enhances the 
specificity of the ligand[1]. 

The zinc finger domain was first described as a DNA-
binding domain (with the CCHH amino acid motif) and 
was subsequently described in proteins that interact 
with RNA (with the CCCH motif), such as Tis11 and 
Tristetraprolin (TTP)[2,3]. TTP is involved in transcript 
degradation through its interaction with the AU-rich 
elements in the 3’-untranslated regions (3’-UTRs) of 
some mRNAs, as described for tumor necrosis factor 
alpha and granulocyte-macrophage colony-stimulating 
factor mRNAs[4,5].

The Pumilio (PUF) protein takes part in regulating 
different processes in the cell, such as embryogenesis, 
development, and differentiation; however, the best-
characterized function of PUF is as a post-transcriptional 
repressor[6,7]. The domain is characterized by a highly 
conserved C-terminal RBD composed of eight tandem 
repeats[6-10]. 

The hnRNP K-homology domain recognizes a specific 

sequence of single-stranded RNA and is found in both 
eukaryotes and prokaryotes. The domain is appro-
ximately 70 amino acids long, and the proteins are 
associated with a diversity of gene expression regulation 
mechanisms, such as splicing, transcriptional regulation, 
and translational control[6]. 

The Arg-Gly-Gly repeat (RGG) domain can interact 
with either RNAs or proteins, and this interaction can 
be based on the positive charge of the arginine amino 
acids[7]. Proteins containing RGG motifs are associated 
with several cellular processes, including transcription, 
splicing and mRNA export. One example of an RGG 
domain protein is the yeast Scd6 protein. It modulates 
translation by preventing the formation of the 48S pre-
initiation complex by binding eIF4G through its RGG 
motif[8,9].

RBPs in protozoa
Most of the RBPs characterized in protozoa arise from try-
panosomatids. Proteins such as TcDHH1[10] are involved 
in the formation of mRNA granules in Trypanosoma 
cruzi and Trypanosoma brucei, but it is believed that 
the function and composition of these granules can be 
different from those described for higher eukaryotes[11]. 
TcDHH1 binds to RNAs encoding stage-specific surface 
antigens from the infective trypomastigote forms. 
However, these mRNAs are also found at low levels in the 
non-infective epimastigote forms, leading to the hypothe-
sis that TcDHH1 might be involved in the degradation of 
the targets in these forms[10,12]. 

Trypanosome gene expression regulation is mostly 
post-transcriptional, which suggests that some RBPs 
might display regulatory functions distinct from those 
described for other eukaryotes. One example is the 
poly-A binding proteins PABP1 and PABP2: Only PABP2 
accumulates in the nucleus, indicating that PABP1 and 
PABP2 might be part of distinct mRNPs that associate 
with distinct populations of mRNAs[13]. Some proteins, 
such as TbDRBD3, TbPTB2, TbZPF3, TbPUF9, TbPUF1 
and TbPUF2, can function as mRNA destabilization 
factors. However, the modulation mechanisms for most 
RBPs in trypanosomatids remain unknown[14]. 

In T. cruzi, the zinc finger protein TcZFP1 binds pre-
ferentially to C-rich regions[15]. However, TcZFP2 has 
a higher affinity for A-rich regions, and the mRNAs 
associated with this protein appear to be upregulated in 
metacyclic trypomastigotes, suggesting a possible role 
in parasite differentiation[16].

Some RBPs, such as TcPUF6[17] and TcUBP1[18], are 
involved in the downregulation of their target transcripts, 
while others, such as RBP19, can negatively regulate 
their own mRNAs[19]. Some RBPs, such as RBP42[20] 
and the Alba proteins[21], associate with the translation 
machinery. The RBP42 protein from T. brucei binds 
to the coding region of mRNAs of the insect form 
that encode metabolic proteins. RBP42 is an essential 
protein and associates with mRNAs bound to polysomes 
in the cytoplasm[20]. However, some RBPs, such as 

Alves LR et al . Protozoan RNA-binding proteins in stress and differentiation

79 February 26, 2016|Volume 7|Issue 1|WJBC|www.wjgnet.com



TbRBP10, a cytoplasmic protein essential to the T. brucei 
bloodstream forms, appear to affect the expression of 
their targets indirectly through other proteins that form 
the mRNP complex[22].

TcRBP40 is found dispersed within the cytoplasm 
and is also concentrated in reservosomes, a storage 
organelle present in T. cruzi and some bat trypanosomes 
during a specific life cycle stage[23,24], suggesting that 
this organelle can also be involved in RNA processing[25]. 
There are also some RBPs with assigned nuclear fun-
ctions, such as TbPTB2, which is involved in trans-
splicing processing of some mRNAs[26]. Similarly, 
TbRRM1 is a nuclear RBP that associates with mRNAs 
from T. brucei and with the auxiliary splicing factor 
polypyrimidine tract-binding protein (PTB) 2, but not 
with components of the core spliceosome. A knockdown 
of TbRRM1 caused extensive alterations in mRNA 
abundance and regions enriched for the downregulated 
mRNAs were identified. In addition, in cells subjected 
to heat shock, TbRRM1 shifted from the nucleus to the 
cytoplasm, which led to the compaction of chromatin[27].

The T. brucei nucleolar RBPs PUF7 and PUF10 are 
involved in ribosomal RNA maturation and transcriptional 
control of procyclic stage-specific genes transcribed 
by RNA polymerase Ⅰ[28]. TcSUB2 is involved in the 
transcription/export pathway and is mainly localized to 
the nucleus[29]. 

In Plasmodium, DDX-6 class DEAD box RNA helicase 
(DOZI) is essential to zygote development because of its 
role in controlling mRNA stability[30,31]. In P. falciparum, 
both PfPuf1 (PFE0935c) and PfPuf2 (PFD0825c) are 
upregulated in gametocytes[32,33]. Microarray analysis 
detected increasing amounts of PfPuf1 and PfPuf2 
mRNAs during gametocyte maturation[34]. Interestingly, 
the highest level of PfPuf2 expression was observed in 
sporozoites[35]. 

In Toxoplasma gondii, TgPuf1 displays different 
expression levels in tachyzoites and bradyzoites, indic-
ating that it might function in regulating processes 
such as proliferation and/or differentiation that would 
enable the parasites to respond rapidly to changes 
in environmental conditions[36]. Another protein from 
T. gondii is the RGG single-strand-binding protein 
(TgSsossB), which interacts with the TgAlba proteins 
that are involved in translation regulation[37]. When the 
RGG domain was deleted from the protein, the mutant 
strain produced fewer plaques in stress conditions, a 
defect associated to a slow growth phenotype due to the 
exposure of extracellular parasites to stress. Moreover, 
the mutant lost its capacity to interact with the TgAlba 
complex[38].

RBPs and post-transcriptional control in stress
In unicellular and multicellular organisms, there is a very 
subtle balance between the cell’s capacity to respond to 
stress and cell death. For the former, this balance needs 
to be even more strictly regulated, and there are many 
variables involved that take into account the strength 
and duration of the stimuli[39]. The stress response needs 

to be fast to allow cell survival, if we consider the cell’
s time scale, at the moment the stress is triggered, 
the response starts immediately (within nanoseconds), 
and the cell metabolism adapts dynamically to the 
environment. Accordingly, there is modulation of gene 
expression, and trans-acting factors such as RBPs are 
key to this prompt response. 

Post-transcriptional gene regulation occurs at 
different levels: Splicing, mRNA stability and translation 
regulation. With regard to splicing, it has been shown 
that when a cell is subjected to a low dose of ultraviolet 
radiation irradiation, the C-terminal domain of RNA 
polymerase Ⅱ is phosphorylated, and the splicing 
dynamics are altered. This alteration allows, via alter-
native splicing, the inclusion of exons with weaker splice 
sites[40,41]. One example of alternative splicing occurs 
with the MDM2 RNA during genotoxic stress. Under 
normal conditions, the MDM2 protein targets the p53 
protein for degradation via ubiquitination; however, 
during stress, an exon is skipped in the MDM2 RNA, 
which ultimately results in the maintenance of p53 in the 
cell. This effect is only reversed upon restoration of the 
normal condition[42]. Splicing factors are also targets of 
regulation during stress. For example, hnRNP1 shuttles 
to the cytoplasm during osmotic stress, while the other 
splicing factors remain in the nucleus[43].

Extensive studies have been performed and highlight 
the importance of translational control during stress. For 
the cell, it is vital to control and arrest translation during 
stress, as 50% of the cell’s energy is consumed during 
translation[44]. 

For most mRNAs, translation initiation occurs when 
the trimeric eIF4F complex binds to the transcript. 
This complex is formed by the protein eIF4E (the cap-
binding protein), eIF4A (RNA helicase) and eIF4G (which 
forms the scaffold protein complex via its binding sites 
for eIF4E and eIF4A). The trimeric complex binds 
to the cap, followed by ribosome scanning from the 
RNA 5’-end to the first AUG site. Then, eukaryotic 
initiation factor 2 (eIF2) associates with tRNAimet, 
part of eIF2-GTP ternary complex that is required to 
bring the initiator tRNA to the ribosome[45,46]. When 
a stress signal is generated, two basic mechanisms 
are activated: The availability of eIF4E, which can be 
sequestered by eIF4EBPs (eIF4E-binding proteins), and 
the phosphorylation of eIF2α. Global translational arrest 
occurs, and only a few proteins are translated to help 
the cell overcome the stress. The most studied genes 
upregulated during stress are those encoding heat 
shock proteins (HSPs), whose transcription is stimulated 
by the heat shock factor that senses misfolded proteins 
in the cytoplasm and shuttles to the nucleus. HSPs 
are chaperones that help properly fold proteins[47]. 
Aside from HSPs, some transcripts that contain ups-
tream open reading frames can be translated even 
under conditions of eIF2α phosphorylation[48,49]. The 
transcripts that contain internal ribosome entry sites 
(IRESs) on their 5’-UTRs can also bypass the inhibition 
of cap-dependent control (eIF4F). Interestingly, some 
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formation of these granules[54,56-58]. Some of the proteins 
characteristic of P-bodies are depicted.

There is a spatial separation between the mRNAs 
that are being translated from those that are asso-
ciated with P-bodies. The mRNA translation status 
depends on the proteins associated with the mRNP 
complexes, which direct the mRNA molecules either 
to the polysomes for translation or to RNA granules 
for storage and/or degradation[55,59]. Observations 
indicate that several mRNAs present in the P-bodies 
undergo cap removal and are consequently prone to 
degradation[60,61]. However, the P-bodies may also act 
as mRNA storage sites, allowing mRNAs to return to the 
translation machinery. Experiments have shown that 
specific mRNAs accumulate in P-bodies in growing cells 
or cells under stress and that they emerge from the 
granules and migrate to the polysomes to be translated 
when normal conditions are restored[60,61].

Another type of mRNP granule found in eukaryotes 
is the stress granule. Unlike P-bodies, the stress 
granules are composed mainly of translation initiation 
factors, the 40 s ribosomal subunit and several RBPs[62]. 
Studies indicate that physical interaction occurs bet-
ween the P-bodies and stress granules and that the 
mRNAs can switch between them[63] (Figure 1). The 
translation initiation complexes bound to mRNAs, 
which include eIF3, the eIF4F complex, eIF4B, the 40S 
ribosomal subunit and PABP-1, form the core of the 
stress granules and are considered markers of these 

RBPs function as IRES-trans acting factors and interact 
with these IRES elements, resulting in the coordination 
of the subset of transcripts that will be translated[50]. 
For example, during stress, the PTB recognizes the 
IRES element in p53 transcripts and in other mRNAs 
associated with apoptosis and starvation and triggers 
their translation to respond to the stress conditions[51].

mRNA stability can be altered as a response to 
stress. Transcripts are sequestered to RNA granules that 
ultimately modulate their availability to the translation 
machinery, storage or degradation, depending on 
the associated proteins. Among the RNA granules, 
the processing bodies (P-bodies) are multiprotein 
aggregates of mRNPs containing mRNAs that are not 
being translated, associated with proteins involved in 
RNA degradation pathways and translation inhibition 
factors. These aggregates colocalize in cytoplasmic 
foci, and their numbers and size vary according to cell 
conditions such as oxidative stress, nutritional status 
and treatment with drugs that inhibit translation[52]. The 
proteins that have been identified as being involved 
in mRNA decapping [DCP1, DCP2, DHH1 and their 
activators, RCK/p54, pat1 (as part of the Lsm1-7 
complex), the XRN1 exonuclease complex, and CCR4/
POP2/NOT] are also found in P-bodies of mammalian 
and yeast cells[53-55]. Some proteins are essential for the 
formation of P-bodies, such as GW182 (which is involved 
in the route of degradation by micro RNA), RCK/p54 and 
Lsm4, as the absence of these proteins prevents the 
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Figure 1  Messenger ribonucleoprotein compex dynamics during stress. Under normal conditions (left panel), several mRNAs exist in the cytoplasm and are 
normally translated. Some of these mRNAs can be degraded depending on the several translation rounds, and translation is repressed for some of them. Upon stress 
(right panel), most mRNAs leave the polysomes and are directed to either the degradation machinery or specific mRNP complexes (RNA granules), where they 
remain silent until normal conditions are restored. Few mRNAs are translated under conditions of stress. mRNP: Messenger ribonucleoprotein compex.
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structures[64]. Other proteins characteristic of stress 
granules may affect mRNA translation, such as T cell 
antigen internal-1 (TIA-1) and TIA-1-related, Fragile X 
mental retardation protein (FMRP) and Fragile X mental 
retardation-related protein-1, Argonaute, cytoplasmic 
polyadenylation element-binding protein, Pumilio and 
RNA-associated protein 55. Still others are involved 
in mRNA stability, such as RNA helicase RCK/p54, 
5’-exonuclease 3’ XRN1, proteins that bind to the ARE 
element, and Hur and TTP, which respectively stabilize 
and destabilize mRNA[65]. In mammalian cells, stress 
granules are formed as a result of phosphorylation 
of eIF2α by stress-activated kinases. The granules 
assemble when RBPs such as TIA-1, TTP, FMRP or G3BP 
bind to specific transcripts that are linked to the stalled 
pre-initiation 48S complex. After this initial nucleation 
stage, the polyA-binding protein (PABP) promotes the 
aggregation of these small granules by making them 
microscopically visible. Some proteins that do not have 
a canonical RBP domain can also associate with the 
granules through protein-protein interactions, which 
suggests that stress granules can interact with other 
signaling pathways in the cell[62,66].

Sheth et al[67] proposed an RNA cycle model des-
cribing the dynamics of mRNAs in the cytoplasm, from 
polysomes to P-bodies and stress granules. In this 
model, mRNAs are able to associate with polysomes 
being effectively translated into proteins; however, 

when a stress signal is triggered, mRNAs interact with 
components of the degradation/storage pathway, 
translation is stopped, and the mRNP that is formed 
is held in P-bodies. This mRNA can then be stored or 
degraded in the P-bodies or returned to the translation 
apparatus[55,66]. Stress granules represent a translation 
arrest site that increases in abundance as mRNAs are 
dissociated from polysomes; the association of mRNA 
with initiation factors may facilitate their re-entry for 
translation when the stress ceases[55]. The molecular 
mechanisms encompassed in the transition between 
polysomes, P-bodies and stress granules need to be 
clearly elucidated.

In several unicellular eukaryotes, stress is involved in 
triggering differentiation. This association is exemplified 
in Figure 2, which shows that nutritional, pH and tem-
perature stresses are involved in the life cycle of the 
human pathogen Trypanosoma cruzi. Accordingly, it has 
been shown that formation of RNA granules increases 
during the nutritional stress preceding metacyclog-
enesis[10,12] (Figure 1). This process is dynamic because 
there is an important switch in the mRNAs sequestered 
to RNA granules in the course of the differentiation 
process[68].

RBPs in stress in protozoa
RBPs are crucial for the rapid gene expression remode-
ling that occurs in the course of cell differentiation or 
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Figure 2  Physiological stresses and differentiation. The schematic representation shows the life cycle of Trypanosoma cruzi. This parasite alternates between two 
distinct intermediary hosts. The change to each host involves a temperature stress, either a heat shock (28 ℃ to 37 ℃) during the passage from the invertebrate to 
the vertebrate or a cold shock (37 ℃ to 28 ℃) when the parasite switches from the mammalian to the triatomine vector. Inside the hosts, nutritional and pH stresses 
are determinants for the differentiation from the non-replicative to the replicative forms (either epimastigotes in the insect or amastigotes in the mammal host) and from 
those to the infective trypomastigote forms.
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the stress response. In some case, the changes in 
gene expression are accompanied by changes in mRNA 
localization within the cell. Accordingly, the localization of 
specific mRNAs is a meaningful tool to optimize protein 
synthesis and to maintain cell polarity[69]. Fluorescence 
in situ hybridization analysis using poly-T showed the 
increase of fluorescent granules during stress conditions 
in trypanosomatids, suggesting that the mRNAs were 
mobilized to form RNA granules. It was also observed 
that the cytoplasmic localization of specific transcripts 
changed during differentiation[70].

Proteomic analysis evidenced a global change in 
the protein composition of T. cruzi mRNPs isolated 
from polysomal and post-polysomal fractions from epi-
mastigotes in exponential growth and epimastigotes 
under nutritional stress. More than 500 proteins 
were identified, and among them were several RBPs. 
Interestingly, a dynamic shift in protein composition was 
also observed in response to nutritional stress, especially 
for those proteins identified in the polysomal-free 
fraction of stressed parasites[71].

Some specific RBPs play important roles during the 
stress response in parasites. One example is TcZC3H39, 
a zinc finger protein from T. cruzi that exhibits a shift 
in the composition of the bound mRNA targets de-
pending on the physiological conditions of the cell. 
Under stress conditions, the TcZC3H39-mRNP complex 
sequesters highly expressed mRNAs, thereby slowing 
translation activity. Accordingly, the number of bound 
mRNA targets was higher in stressed parasites than in 
non-stressed parasites. Under stress conditions, the 
TcZC3H39-mRNP complex was enriched in targets that 
are highly expressed under non-stress conditions, such 
as ribosomal and oxidative phosphorylation pathway 
proteins[68]. The protein content of TcZC3H39-mRNP 
consists of ribosomes, translation factors, RNA helicases 
and other RBPs, suggesting that this zinc finger protein 
might be part of complexes similar to stress granules, 
sequestering highly expressed mRNAs and the 
associated ribosomes, possibly slowing down translation 
in response to stress conditions[68].

The zinc finger protein ZC3H11 plays an important 
role during T. brucei heat shock. This protein is essential 
for the bloodstream form of the parasite and stabilizes 
HSP70 mRNA and other transcripts that encode cha-
perones necessary for proper protein folding or refolding 
during heat stress[72]. ZC3H11 interacts with the MKT1 
and PBP1 proteins, forming a complex that stabilizes 
the associated transcripts[73].

TbDRBD3 is a cytoplasmic RRM protein from T. brucei 
that relocalizes to the nucleus and forms stress granules 
upon oxidative stress. It has been suggested that 
DRBD3 participates in the transport of target mRNAs 
that are remodeled in response to stress[74]. Accordingly, 
RNA-seq showed that the mRNAs associated with this 
protein encode ribosomal proteins, translation factors 
and enzymes, suggesting a role in protein synthesis in T. 
brucei[75]. 

TcSR62 is a nuclear RBP from T. cruzi that relocalizes 

to the nucleolus during actinomycin-D treatment[76]. 
Other RBPs, such as DRBD4 (PTB2 in T. brucei, a PTB 
homolog) and PABP, have also been observed to show 
this behavior during treatment with actinomycin-D or 
during severe heat shock[76]. It has been hypothesized 
that the nucleolus plays a role as a sensor or regulator 
of cell metabolism during the stress response[77,78].

T. brucei Alba 3 and 4 are found in stress granule-
like structures during nutritional deprivation. They 
partially co-migrate with polysomes and also associate 
with the helicase DHH1, translation initiation factors and 
PABP1, indicating a role in translation modulation[21]. 

The heat shock response in T. brucei involves 
a reduction of the polysomes and a corresponding 
increase in the number of RNA granules, such as P-bodies 
and stress granules. The P-bodies from T. brucei are 
composed of XRNA (mRNA decay machinery), Scd6 
and DHH1. These RNA granules could act as sites 
for RNA storage or degradation during stress and 
differentiation[79].

In T. cruzi, the DHH1 protein is also localized in 
cytoplasmic foci that resemble P-bodies and/or stress 
granules. The protein interacts with PABP, and its 
localization changes in response to nutritional stress; the 
granules increase in number and also become bigger, 
likely due to the shift of mRNAs from the polysomes to 
the RNA granules[12]. 

It is important to mention that proteins lacking 
canonical RBDs but having other functions in the cell 
can also associate with RNAs and become structural 
components of RNP complexes[80]. The moonlighting 
theory proposes that some multifunctional enzymes 
normally associated with metabolic pathways can also 
play a role in regulating gene expression in prokary-
otes and eukaryotes. This “moonlighting” role was 
previously described for glyceraldehyde-3-phosphate 
dehydrogenase, which can be found within the nuclei 
of mammalian cells acting in transcription, DNA repair, 
RNA binding and transport, and telomere binding[73,81,82]. 
Other examples are inosine monophosphate dehy-
drogenase[83], acetyl-CoA carboxylase[84], lipin-1[85], 
aminoacyl-tRNA synthetase[86], Llv5p, which is required 
for the synthesis of branched chain amino acids[87], 
phosphofructokinase[88] and the mitochondrial enzyme 
Arg5,6, that participates in the transcription of target 
genes in addition to its role in arginine biosynthesis[89]. 

Another example of a moonlighting protein in T. 
cruzi is EF-1α, which associates with a specific subset 
of mRNAs during stress conditions. This protein can 
associate with large protein complexes independent of 
the translation machinery. A specific subset of mRNAs 
associates with EF-1α-mRNPs in unstressed or stressed 
epimastigotes. Some mRNAs are common to both 
physiological conditions, whereas others are specific to 
a given physiological condition. Gene ontology analysis 
identified enrichment of gene sets involved in single-
organism metabolic processes, amino acid metabolic 
processes, ATP and metal ion binding, glycolysis, 
glutamine metabolic processes, and cobalt and iron ion 
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binding[90].

RBPs and eukaryotic cell differentiation
In parasites, several RBPs involved in differentiation have 
been described. The RRM-containing domain proteins 
RBP10 and RBP6 from T. brucei are implicated in life-
cycle differentiation[22,91]. Accordingly, RBP10 knockdown 
led to a great alteration in the mRNA levels of transcripts 
normally found in high levels in the bloodstream forms[22]. 
The CCCH zinc finger proteins ZFP1, ZFP2 and ZFP3 have 
also been described as having roles in differentiation 
in trypanosomes[92,93]. Knockdown of ZFP1 disturbed 
the bloodstream differentiation by repositioning the 
kinetoplast in T. brucei[94]. A similar result was obtained 
with the RNAi knockdown for ZFP2: The parasite was 
unable to differentiate[92]. ZFP3 overexpression enhanced 
the differentiation levels to procyclic forms, and it is 
believed that these three proteins are part of the same 
differentiation pathway[93,95].

CONCLUSION
Despite evidence of the role for RBPs in gene expression 
regulation, particularly in protozoa as a means to 
respond promptly to environmental changes, the det-
ailed mechanisms remain to be clearly elucidated. We 
anticipate that the complexity of these mechanisms 
should increase, as we do not yet know how different 
combinations of RBPs in a given complex affect the fate 
of the bound mRNAs. Furthermore, the modulation of 
the interactions within a complex could also be affected 
by post-translational modifications of the RBPs, creating 
an RBP code analogous to the histone code.
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