
Cultivation-Independent Methods Reveal Differences
among Bacterial Gut Microbiota in Triatomine Vectors of
Chagas Disease
Fabio Faria da Mota1, Lourena Pinheiro Marinho2, Carlos José de Carvalho Moreira3, Marli Maria Lima4,
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Abstract

Background: Chagas disease is a trypanosomiasis whose agent is the protozoan parasite Trypanosoma cruzi, which is
transmitted to humans by hematophagous bugs known as triatomines. Even though insecticide treatments allow effective
control of these bugs in most Latin American countries where Chagas disease is endemic, the disease still affects a large
proportion of the population of South America. The features of the disease in humans have been extensively studied, and
the genome of the parasite has been sequenced, but no effective drug is yet available to treat Chagas disease. The digestive
tract of the insect vectors in which T. cruzi develops has been much less well investigated than blood from its human hosts
and constitutes a dynamic environment with very different conditions. Thus, we investigated the composition of the
predominant bacterial species of the microbiota in insect vectors from Rhodnius, Triatoma, Panstrongylus and Dipetalogaster
genera.

Methodology/Principal Findings: Microbiota of triatomine guts were investigated using cultivation-independent methods,
i.e., phylogenetic analysis of 16s rDNA using denaturing gradient gel electrophoresis (DGGE) and cloned-based sequencing.
The Chao index showed that the diversity of bacterial species in triatomine guts is low, comprising fewer than 20
predominant species, and that these species vary between insect species. The analyses showed that Serratia predominates
in Rhodnius, Arsenophonus predominates in Triatoma and Panstrongylus, while Candidatus Rohrkolberia predominates in
Dipetalogaster.

Conclusions/Significance: The microbiota of triatomine guts represents one of the factors that may interfere with T. cruzi
transmission and virulence in humans. The knowledge of its composition according to insect species is important for
designing measures of biological control for T. cruzi. We found that the predominant species of the bacterial microbiota in
triatomines form a group of low complexity whose structure differs according to the vector genus.
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E.S.G. and P.A. are Senior Scientists from CNPq; N.C. is a Visiting Scientist from Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES, http://www.
capes.gov.br/) and FIOCRUZ/CDTS; L.P.M. is a student from PIBIC/CNPq. The funders had no role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: nicolas.carels@cdts.fiocruz.br

Introduction

Chagas disease [1], which was first described by Chagas [2] as

the American human trypanosomiasis, is a potentially life-

threatening illness caused by the protozoan parasite Trypanosoma

cruzi, which is transmitted via obligate hematophagous insect

vectors classified within the family Reduviidae, subfamily Triatominae,

commonly known as kissing bugs. Chagas disease is a tropical

endemic disease found over large areas of South and Central

America and has been ranked as one of the most important

diseases in Latin America in terms of social and economic impacts

[3,4]. According to the WHO statistics for 2010, an estimated 10

million people are infected with T. cruzi worldwide, mostly in Latin

America, with 30% of chronically infected individuals exhibiting

cardiac alterations and 10% showing digestive, neurological or

mixed alterations. More than 25 million people are at risk of the

disease. It is estimated that in 2008, Chagas disease killed more

than 10,000 people (http://www.who.int/mediacentre/

factsheets/fs340/en/index.html).

In Colombia, the annual treatment costs for chronic Chagas

disease patients vary from $46 for a patient with cardiomyopathy

without congestive heart failure treated in a basic care facility to
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approximately $7,900 for a patient with congestive heart failure

requiring a specialized level of care. In Mexico, the cost per

admitted patient varies from $4,463 to $11,839, while it has been

reported to be $3,864 on the average in Brazil. Healthcare costs

must be considered together with prevention costs, i.e., a

minimum of $30/house. These costs multiplied by the infected

population provide an idea of the total costs of Chagas disease for

Latin American economies [5]. Despite the continuous pressure

for vaccine or drug development, no suitable solution for

addressing this situation has been developed thus far. The best

strategy for combating Chagas disease is still controlling the

triatomine population via insecticide application.

According to their association with humans, it is common to

characterize triatomines as domestic, peridomestic or sylvatic.

Domestic and peridomestic triatomines create the greatest public

concern due to their impact on human populations. The species

comprising these groups depend on latitude [6]. Similarly, the type

of trypanosome transmitted varies according to geographic

localities and the species of insect vectors. Because of co-

evolutionary processes, it is often observed that local vector

species show a higher rate of infection with local T. cruzi strains

[7]. Many factors can affect T. cruzi gut colonization, including the

intestinal microbiota [8,9]. Thus, the vector may act as a biological

filter for the parasites [9,10]. Based on GMO technology and the

coprophagous habits of triatomines, it has been proposed that

triatomine resistance of T. cruzi gut infection could be increased by

natural autoinoculation with paratransgenic symbionts [11].

Different bacterial groups have been found in triatomine guts

(see [10]). However, the spectrum of bacterial species identified in

laboratory cultures does not necessarily reflect the relative fre-

fquency of these species under natural conditions [10]. Identifi-

cation of the main bacterial groups in triatomine guts is important,

as it may influence the selective pressures on T. cruzi [12].

Cultivation-independent methods, such as PCR-DGGE, full-

length 16S rDNA sequencing and other molecular approaches,

have been widely applied for describing insect gut microbiota and

have revealed substantial bacterial diversity as well as groups of

uncultivable microbes [13]. These methods offer the advantage of

being performed independent of culture medium and providing a

quantitative picture of the dominant microbiota present.

In this report, we applied PCR-DGGE and library sequencing

approaches to assess the diversity of bacterial communities in the

guts of triatomine specimens from insectary colonies and from the

field based on 16S rDNA analysis. We show that the microbiota of

the triatomine guts are predominately composed of a few bacterial

species that tend to be specific to the vector species; i.e.,

Arsenophonus was preferentially associated with vectors of the

Panstrongylus and Triatoma genera, while Serratia and Candidatus

Rohrkolberia were typical of Rhodnius and Dipetalogaster.

Materials and Methods

Insect colonies, field capture and gut dissection
A total of 54 triatomines in the 5th instar larval stage including

both males and females belonging to different genera (Dipetalogaster

maximus, Panstrongylus megistus, Triatoma infestans, Triatoma vitticeps,

Rhodnius prolixus and Rhodnius neglectus) were obtained from insectary

colonies maintained over approximately 20 generations at the

Laboratório de Doenças Parasitárias (Fiocruz, IOC) using chicken as a

blood source.

Additionally, nine individuals of Rhodnius prolixus in the 5th instar

larval stage fed with rabbit blood were obtained from another

insect collection maintained as described by Garcia and Azambuja

[14], and seven sylvatic 5th instar larvae or adults of Rhodnius sp.

were directly captured from palm trees (Attalea maripa) at

Oriximiná, PA, Brazil (Amazon region) as described by Abad-

Franch et al. [15] and kept isolated from the other specimens

without receiving a blood meal until dissection. Insects that were

separated from colonies were dissected 7–10 days after feeding.

Dissection of the insects was performed using two fine forceps to

open the dorsal side of specimens from the posterior end of the

abdomen toward the last thoracic segment. Meticulous dissection

of the whole gut was performed using a sterile ultrafine insulin

syringe needle. Feces were obtained by abdominal compression or

spontaneous dejections immediately after feeding. Guts and feces

were collected in sterile Eppendorf tubes and maintained at

220uC until use. All steps were performed under aseptic

conditions.

DNA extraction from insect guts and feces
DNA was extracted from feces and gut samples using the Fast

DNA Spin Kit for soil (Qbiogene, BIO 101 Systems, CA, USA)

according to the manufacturer’s protocol. DNA concentrations

were determined using a NanoDrop spectrophotometer (Thermo

Fisher Scientific Inc.). The DNA extracts were visualized on 0.8%

(w/v) agarose gels to assess their integrity and purity.

PCR amplification of bacterial 16S rDNA fragments for
DGGE

Fragments of 16S rDNA (corresponding to the V6–V8 region of

the E. coli 16S rDNA gene) were amplified via PCR using the

primers 968F-GC (59-CGC CCG CCG CGC CCC GCG CCC

GTC CCG CCG CCC CCG CCC G AAC GCG AAG AAC

CTT AC-39) and 1401R (59-CGG TGT GTA CAA GAC CC-39)

as described by Nübel et al. [16]. The 50 ml reaction mix

contained 1 ml of template DNA (corresponding to approximately

50 ng), 10 mM Tris-HCl (pH 8.3), 10 mM KCl, 2.5 mM MgCl2,

0.2 mM of each dNTPs, 1.25 U of Taq DNA polymerase

(Promega, Madison, WI, U.S.A.), and 0.2 mM of each primer.

The amplification conditions were 162 min at 94uC followed by

3561 min at 94uC, 1.5 min at 48uC, and 1.5 min, 72uC, and a

final 10 min extension at 72uC. Negative controls (without DNA)

were included in all amplifications. The PCR products were

analyzed by agarose gel electrophoresis (1.4% gel) and ethidium

Author Summary

Chagas disease is one of the most important endemic
diseases of South and Central America. Its causative agent
is the protozoan Trypanosoma cruzi, which is transmitted
to humans by blood-feeding insects known as triatomine
bugs. These vectors mainly belong to Rhodnius, Triatoma
and Panstrongylus genera of Reduviidae. The bacterial
communities in the guts of these vectors may have
important effects on the biology of T. cruzi. For this reason,
we analyzed the bacterial diversity hosted in the gut of
different species of triatomines using cultivation-indepen-
dent methods. Among Rhodnius sp., we observed similar
bacterial communities from specimens obtained from
insectaries or sylvatic conditions. Endosymbionts of the
Arsenophonus genus were preferentially associated with
insects of the Panstrongylus and Triatoma genera, whereas
the bacterial genus Serratia and Candidatus Rohrkolberia
were typical of Rhodnius and Dipetalogaster, respectively.
The diversity of the microbiota tended to be the largest in
the Triatoma genus, with species of both Arsenophonus
and Serratia being detected in T. infestans.
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bromide staining [17]. Amplicons were stored at 220uC until

DGGE analysis.

Denaturing gradient gel electrophoresis (DGGE)
DGGE was carried out as described by da Mota et al. [18] using

a Bio-Rad DCode Universal Mutation Detection System (Bio-Rad

Laboratories, Munich, Germany). PCR products (15 ml) were

applied onto 6% (w/v) polyacrylamide gels in 16 TAE buffer

(40 mM Tris-acetate [pH 7.4], 20 mM sodium acetate, 1 mM

disodium EDTA) containing a denaturing gradient of urea and

formamide varying from 45% to 65%. The gels were run for 15 h

at 60uC at 100 V. After electrophoresis, the gels were stained for

30 min with SYBR Green I (Invitrogen - Molecular Probes, SP,

Brazil) and photographed under UV light by using a Typhoon

Trio apparatus (Amersham Pharmacia Biotech). SYBR Green-

stained bands were retrieved by excision from the DGGE gels

under UV illumination and eluted in water for sequencing.

PCR conditions for 16S rDNA cloning
The procedure described by Massol-Deya et al. [19] was used to

amplify ,1.5 Kb fragments of the 16S rDNA gene of each insect

specimen via PCR with the universal primer pair pAf (59-AGA

GTT TGA TCC TGG CTC AG-39) and pHr (59-AAG GAG

GTG ATC CAG CCG CA-39). The amplification conditions were

as follows: 35 cycles of 92uC for 1 min 10 s, 48uC for 30 s and

72uC for 2 min 10 s. A hot start (2 min 10 s at 92uC) was applied

to avoid initial mispriming and enhance the specificity of the

amplifications. A final extension step was run for 6 min 10 s at

72uC, and the reaction tubes were then cooled to 4uC. A negative

control (without DNA) was included in all amplifications. DNA

preparation and PCR products were visualized after electropho-

resis as described above.

Cloning and DNA sequencing
Following PCR amplification or band purification with a

QIAquick Gel Extraction Kit (Qiagen Inc.), DNA fragments were

cloned into the pJET2.1/blunt vector using the CloneJET PCR

Cloning Kit according to the instructions of the manufacturer

(Fermentas). After transformation of competent E. coli DH5a cells,

clones were picked, and the presence of inserts of the correct size

was assessed via PCR using forward (59-CGACTCACTATAGG-

GAGAGCGGC-39) and reverse (59-AAGAACATCGATTTTC-

CATGGCAG-39) pJET1.2 primers. The clones were sequenced

using the same primers in an ABI Prism 3730 automatic sequencer

(Applied Biosystems, Foster City, CA, USA). The 101 sequences

obtained were deposited in GenBank under the accession numbers

JQ410794–JQ410894.

DGGE band identification
Base calling and low quality sequence trimming from

electropherogram files were performed with Phred [20]. The

taxonomic position of bacterial genera corresponding to 35

DGGE bands was assessed by comparing their sequences to

sequences in GenBank (Rel. 184, June 2011) according to the best

BLASTn hits (http://blast.ncbi.nlm.nih.gov/, accessed by 2011-

06-08).

Molecular phylogeny
We first removed plasmid vector sequences with cross-matching

and then discarded putative chimeras using the Mallard program

[21]. Full-length 16S rDNA sequences were obtained by

assembling valid insert sequences with CAP3 [22]. The full-length

16S rDNA sequences and their homologous pairs from GenBank

corresponding to the best BLASTn hits were aligned using

MUSCLE v3.7 [23]. We constructed maximum likelihood

phylogenetic trees with 1,000 bootstrap replicates using the

generalized time-reversible (GTR) model [24]. The GTR model

is the most general, as it is a neutral, independent, finite-site and

time-reversible model. This process allowed accurate inference of

the phylogenetic relationships of the full 16S rDNA sequences with

their closest relatives of known taxonomic positions.

Operational taxonomic units and richness estimation
Sequences aligned with MUSCLE v3.7 were formatted

according to PHYLIP and used to construct distance matrices

for each library with DNADIST (provided in the PHYLIP 3.6

package, [25]) using the default parameters and Jukes-Cantor as

the substitution model. The distance matrices were used as input

files for MOTHUR v1.14 [26] to define operational taxonomic

units (OTU) on the basis of a similarity distance cutoff of 0.03

(OTU0.03). Sequences belonging to the same cluster based on

reference to OTU0.03 were circumscribed with ellipses in the

phylogenic trees that we identified using Greek symbols for the

purpose of clarity. Although this cutoff distance can be seen as

arbitrary, it is often helpful to think of OTUs defined by distances

of 0.03 as corresponding to a species [27]. Then, we calculated the

Chao1 index [28], which measures the absolute value of species

richness. To estimate the relationship between the expected OTU

richness and the sampling depth, we used rarefaction curve

methodology [29,30]. Good’s coverage estimator [31] was used to

calculate the sample representativeness with the formula

C = 12(ni/N)6100 [28], where N is the total number of clones

analyzed, and ni is the number of clones that occurred only once

among the total number of clones analyzed using OTU0.03 [32]

Results

DGGE is a simple method that is well suited to characterize the

global complexity of bacterial communities, such as found in

triatomine guts from insectary colonies or field specimens. When

analyzing the electrophoresis migration patterns of 16S amplicons

from guts of Dipetalogaster maximus (Fig. 1, lanes A–C), Panstrongylus

megistus (Fig. 1, lanes D–F), Triatoma infestans (Fig. 1, lanes G–I),

Triatoma vitticeps (Fig. 1, lanes J–L) and Rhodnius neglectus (Fig. 1,

lanes M–O) using this system, we observed band patterns that are

characteristic of these species and were conserved among triplicate

specimens of the same vector species.

Further characterization of these bands by DNA sequencing

revealed that their corresponding bacterial species were essentially

members of the Enterobacteriaceae, particularly of the three genera

Candidatus Rohrkolberia (bands 1–3), Arsenophonus (bands 4–22) and

Serratia (bands 23–29). Some bands (23–25) related to Serratia were

shared by different insect genera, i.e., Triatoma and Rhodnius.

Additionally, Arsenophonus sequences were found in Panstrongylus

(bands 4–18) and Triatoma (bands 19–22), but not in Rhodnius or

Dipetalogaster. The fingerprints of Triatoma infestans and Triatoma

vitticeps were similar, suggesting that the main species in the

bacterial communities in triatomine guts are specific to the genus

of their hosts. When the DGGE fingerprints of wild specimens of

Rhodnius sp. collected from the Amazon (Fig. 2, lanes D–L) were

compared to those of specimens of Rhodnius prolixus (Fig. 2, lanes

A–B) and Rhodnius neglectus (Fig. 2, lane C) from insect collections

grown under captivity and fed with rabbit or chicken blood, we

actually observed similar profiles (Fig. 1, bands 28 and 29; Fig. 2,

bands 1 and 2), although some specific bands (Fig. 2, bands 3 and

4) could be only observed in the sylvatic specimens. The profiles

were similar whether guts (Fig. 2, lanes D–J) or only feces (Fig. 2,

Describing Triatomine Gut Microbiota with 16S rDNA
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lanes L–M) were analyzed, showing that these bacteria (Fig. 2,

bands 1,2,5 and 6) are most probably free in the Rhodnius gut

lumen. The profiles were also similar in insects at the 5th instar

larval (Fig. 2, lanes H–J) and adult stages (Fig. 2, lanes D–G). The

sequences of the specific bands could be associated to Candidatus

Rohrkolberia cinguli (GenBank: FR729479.1) or Erwinia chrysanthemi

strain NZEC151 (GenBank: EF530551.1) (Fig. 2, band 3) and

Wolbachia (Fig. 2, band 4), which is an endosymbiont that infects a

wide range of insect hosts (20 to 75% of insect species, see refs in

[33]), such as Microcerotermes sp. (GenBank: AJ292347.1), Pseudo-

lynchia canariensis (GenBank: DQ115537.1) and Supella longipalpa

(GenBank: FJ152101.1).

The full-length 16S rDNA sequences (1.5 kb) are larger than the

partial sequences of 16S bands separated by DGGE (approxi-

mately 430 pb). Therefore, the full-length sequences allow

classification of bacteria at the species level rather than just the

genus level. Thus, full-length 16S rDNA sequences obtained from

libraries of 16S rDNA clones allowed the description of the

bacterial community structure in the investigated specimens in

more details.

The simplest microbiota structure was observed in D. maximus

(Fig. 3), which presented only one OTU0.03 cluster (D1–25),

designated a, including all sequences obtained from its rDNA

library.

Sequences belonging to this a OTU0.03 cluster were also

observed in the R. prolixus microbiota (Fig. 4). The sequences from

the a cluster were grouped along the same phylogenetic branch

and were closely related to Candidatus Rohrkolberia cinguli

(DQ418491.1). One of the sylvatic specimens of Rhodnius sp. also

showed a DGGE band (Fig. 2, lane D, band 3) related to

Candidatus Rohrkolberia cinguli. Candidatus Rohrkolberia cinguli is a new

genus and species name recently proposed for the newly

characterized clade of obligate intracellular symbiotic bacteria

found in the midgut epithelium of the bulrush bug Chilacis typhae

[34]. In R. prolixus, we found two additional OTU0.03 clusters

representing approximately 85% of the bacterial microbiota

related to Serratia marcescens strains (Fig. 4). Cluster d was the

major cluster and represented approximately 73% of the

sequences found in the R. prolixus library. The minor cluster (R2,

R9, R17) is most likely related to Serratia sp.

Sequences similar to the d OTU0.03 cluster were also observed

in the T. infestans microbiota (Fig. 5). Among the triatomine vectors

that we investigated here, T. infestans presented the most complex

microbiota structure, with six OTUs0.03 clusters. In addition to the

d cluster, we found (i) an OTU0.03 represented by only one

sequence (T14) closely related to the d cluster, (ii) an additional

uncharacterized singleton OTU0.03 represented by T15, (iii) an

OTU0.03 including two sequences (T17, T19) related to Serratia

rubidaea and (iv) two clusters (b and c) associated with the

Arsenophonus endosymbionts, representing 62% of the whole set of

sequences.

Sequences similar to clusters b (P1–8, P10–18, P20–25) and c
(P9, P19) from T. infestans were also observed in P. megistus (Fig. 6),

where they represented 92% of the whole sequence set.

To better characterize the relative bacterial species richness

among the triatomines, we used the Chao index. The Ti library

Figure 1. DGGE fingerprints of bacterial 16S rDNA gene fragments amplified from gut microbiota. The l lane contains 5 ml of a
BenchTop 1 Kb DNA ladder (Promega). The other lanes are for Dipetalogaster maximus (A,B,C), Panstrongylus megistus (D,E,F), Triatoma infestans
(G,H,I), Triatoma vitticeps (J,K,L), Rhodnius neglectus (M,N and O). Band identification corresponds to Candidatus Rohrkolberia/Pectobacterium (1 to 3),
Arsenophonus (4 to 22), and Serratia (23 to 29).
doi:10.1371/journal.pntd.0001631.g001
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exhibited the highest species richness, with 6.5 expected OTUs0.03

(confidence interval: 6.03–14.30). The R. prolixus library showed 3

OTUs0.03, while the P. megistus library showed 2 OTUs0.03, and D.

maximus showed 1 OTU0.03 according to the Chao index. There

was no confidence interval associated with R. prolixus, P. megistus

and D. maximus because there are no unseen species expected in

these triatomine species given the rarefaction curve saturation

(Fig. 7). The trend of the rarefaction curves suggests that the

bacterial composition spectrum observed in the T. infestans library

could indeed be slightly larger than reported here (Fig. 7). The

Good’s coverage estimator calculated from the 16S rDNA

sequences of R. prolixus, P. megistus and D. maximus libraries was

100%, demonstrating the representativeness of our results

compared to real conditions. In comparison, the same index

showed that our sequencing coverage of the T. infestans library was

91.6%.

Discussion

A low level of microbiota complexity seems to be frequent in

insect guts [34–38], except in particular cases such as termites

[39]. This study shows that the triatomine gut microbiota, as

revealed by DGGE, are composed of a few predominant bacterial

species that ultimately differ according to the insect vector.

Interestingly, the banding patterns were conserved among

specimens of the same species, suggesting that the bacterial

communities in triatomines are well adapted to their hosts. In

addition, we found the same spectrum of bacterial species when

using different primers pairs for DGGE and full-length 16S rDNA

sequencing, which reduces the probability of a bias at the level of

PCR amplification. Blood is of course sterile, and the sucking

mouth parts of triatomines are adapted to blood consumption

directly from vertebrate host capillaries, minimizing contamina-

tion by skin penetration. However, triatomines have multiple

opportunities to inoculate themselves with bacteria, as they are

coprophagous [40,41].

The habit of feces consumption by triatomines may explain the

similarity between the DGGE fingerprints of the gut microbiota of

individual insects within the same genus. It also suggests that the

bacterial communities found within these vector species are rather

stable and well adapted to their environment. Given the

potentially large spectrum of bacterial species in triatomine feces

due to environmental contamination, it must be concluded that

the low number of prevalent bacterial populations in triatomine

guts despite their coprophagous behavior is due to regulation by

the host vector [42]. Several humoral [38,42,43] and cellular

mechanisms involved in vector defenses have in fact been

described. These mechanisms mainly include (i) antimicrobial

peptides that could restrict the bacterial diversity in the gut, such

as prolixicin produced by Rhodnius prolixus [44], (ii) lysozyme activity,

(iii) prophenoloxidase activation, (iv) phagocytosis and hemocyte

microaggregation, (v) nitric oxide and superoxide production and

(vi) trypanolytic proteins (see refs in [10]). Moreover, the

microbiota also participates in other basic functions, such as

digestion and vitamin production [45]. It is the specific

biochemical balance between host and microbiota factors that

determines the features of the environment where a parasite has to

adapt, and these features are expected to interact with its virulence

[10]. The detection limit of bacterial DNA among eukaryotic

DNA via PCR under normal conditions has been reported to be

between approximately 46102 and 46103 fragments [37]. As a

consequence, we believe that our PCR results simply reflect the

most frequent bacterial species, which does not exclude potential

presence of other species in minute amounts. In addition, some

weak bands from the DGGE gels were not characterized, and the

possibility cannot be excluded that some taxa escaped our

analyses. However, we also showed that more than 90% of the

information related to the gut microbiota of the triatomine

specimens in our investigation has been considered here via

analysis of rarefaction curves obtained for 16S rDNA libraries.

One advantage of DGGE analysis is the possibility of extracting

bands from the gels followed by performing sequence analysis of

the purified amplicons and identifying community members

belonging to different phyla, such as Actinobacteria, Proteobac-

teria, Firmicutes, and Deferribacteres, by comparison to reference

databases [18,37,46]. Investigation of the gut microbiota of

different triatomine species using bacterial culture methods

revealed a bacterial community of limited diversity characterized

by several species of Enterobacteriaceae [10,40], with some of them

being eventually pathogenic to humans. In our analyses, we

mainly detected members of the Enterobacteriaceae (Serratia, Candi-

datus Rohrkolberia/Pectobacterium and Arsenophonus), which suggests

that this group is predominant in the guts of triatomines.

Enterobacteriaceae appear to be frequent in insects, particularly in

insect vectors whose diets are limited to a few food sources

[35,45,47].

In their review of microbiota complexity, Vallejo et al. [10]

reported 6, 25 and 26 bacterial species in T. infestans, R. prolixus and

P. megistus, respectively. However, these numbers were obtained by

different authors across very different conditions and under in vitro

culture. It is clear that this list does not show the relative

abundance of these species in the triatomine gut. In contrast, the

present study provides an indication of the predominant species of

the bacterial microbiota across triatomine species in insectaries

and field conditions, including obligatory intracellular symbionts

that cannot be detected using traditional culture methods [34].

Many complex molecules produced by hosts or microbiota are

present in the insect gut lumen, such as hydrolytic enzymes,

peptides, vitamins, cofactors and antimicrobial factors. These

molecules can stimulate some bacteria, but they can inhibit the

growth of many other competing members in this environment.

For these reasons and many others, it has been recognized that the

in vitro conditions of bacteria culture on artificial media do not

mimic those of the natural conditions in insect guts [13].

Diagnosis of the number of predominant bacterial species is a

quantitative concept when it involves 16S rDNA, which deserves

some comment. Because variation is continuous among sequences,

criteria based on genetic distance must be applied to discriminate

among species, which is the reason that we applied the cutoff of

0.03 to discriminate among OTUs. Although this cutoff distance

can be seen as arbitrary, it is often helpful to think of OTUs that

are defined by a distance of 0.03 as corresponding to a species, of

0.05 as corresponding to a genus, of 0.15 as corresponding to a

class, and of 0.20 to 0.30 as corresponding to a phylum [27]. The

concept of species among bacteria is a difficult issue. At first

glance, the large sequence number per cluster may surprise, but

Figure 2. DGGE fingerprints of bacterial 16S rDNA gene fragments amplified from Rhodnius. The l lane contains 5 ml of a BenchTop 1 Kb
DNA ladder (Promega). The other lanes are for R. prolixus fed with rabbit blood (A); R. prolixus fed with chicken blood (B); R. neglectus fed with chicken
blood (C); guts of Amazon sylvatic Rhodnius sp. adults (D, E, F, G); 5th instar larvae (H, I, J); and feces (K), (L, other sylvatic feces pool) and (M, insectary
feces pool). Band identification matches Serratia (1, 2, 5 and 6), Rohrkolberia (3) and Wolbachia (4).
doi:10.1371/journal.pntd.0001631.g002
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deeper observation shows that the genetic diversity between these

sequences is equivalent to that among strains of the same bacterial

species, as found in GenBank. This is particularly obvious for

Serratia in cluster d. We found relatively good agreement between

the description of microbiota complexity according to (i) OTU0.03

criteria [27], (ii) branch numbers in phylogenetic trees, and (iii) the

species richness index of Chao.

The number of dominant bacterial OTUs0.03 clusters in T.

infestans was ,6 according to the Chao index, with an upper limit

of approximately 14 according to the inference of unseen species.

This index has the advantage of presenting clear and rigorous non-

parametric statistics [28]. Based on this observation, we can

conclude that the microbiota diversity according to the prevalent

bacterial OTUs0.03 is at least two times greater in T. infestans

compared to the other vector species, suggesting a different

relationship between microbiota and vector factors with possible

consequences for protozoan parasitism.

A methodology similar to that used in this study, including DNA

extraction, universal primers and PCR-DGGE, allowed successful

recovery of 16S rDNA sequences related to Rhodococcus sp.

(GU585554), Gordonia sp. (GU585556, GU585557) and other

Actinomycetales from different environments [18,48]. Although

sequences belonging to Rhodococcus were not recovered in the

present study, we cannot exclude the association of weak DGGE

bands with Rhodococcus [40].

In Rhodnius specimens, S. marcescens was the predominant species

observed; this species is a free-living bacterium that produces a red

pigment known as prodigiosine, which has recently received renewed

attention due to its reported antibacterial, antifungal, antipro-

tozoan [49], immunosuppressive and anticancer properties [50].

Moreover, Serratia marcescens has been reported to utilize the type

VI secretion system (T6SS) to target bacterial competitors [51]. It

was demonstrated that T6SS exhibits dramatic antibacterial killing

activity against several other bacterial species [52,53], favoring S.

marcescens strains in Drosophila [51]. The S. marcescens found in

Triatoma sp. and Rhodnius sp. guts could reduce the number and

diversity of other extracellular bacteria in the gut lumen via the

same process, as the antibacterial activity of S. marcescens T6SS

appears to act through direct bacterium-to-bacterium contact

[51]. In addition, S. marcescens can also lyse T. cruzi through the

action of D-mannose fimbriae, which adheres to the parasite

surface [54].

The genus Arsenophonus represents a group of endosymbiotic,

mainly insect-associated bacteria with a broad spectrum of insect

and even plant hosts [55]. Arsenophonus includes lineages with a

rapidly increasing number of closely related symbionts reported

from phylogenetically distant hosts [55,56]. A member of this

genus, Candidatus Arsenophonus triatominarum, has been isolated from

T. infestans [56]. This bacterium is an intracellular endosymbiont

found in hemolymph, heart tissue, salivary glands, neural ganglia,

visceral muscles, nephrocytes, ovaries, testes, and dorsal vessels

that lives in the cytoplasm of host cells and displays pleiomorphy,

with forms ranging from spherical to highly filamentous. In

contrast to Arsenophonus nasoniae (a symbiont of parasitoid wasps of

the genus Nasonia), A. triatominarum does not grow on artificial

culture media but does grow well on Aedes albopictus cell lines,

which demonstrates that it must be considered to be a P-symbiont

[55], and the two species form a distinct lineage of bacteria within

the family Enterobacteriaceae [56]. The draft sequence of the

complete genome of A. nasoniae [57,58] shows that it carries

putative hemolysins, alkaline metalloproteases, serralysin, (an

insecticidal toxin of Serratia) and several other pseudogenized

toxin genes that most likely indicate past parasitic activity typical

of Enterobacteriaceae [58]. In addition, it also carries 8–10 copies of

the rDNA operon [57]. Therefore, although we detected several

Arsenophonus bands by DGGE in P. megistus, we attributed this to

paralogy rather than orthology. Analysis of these sequences

actually revealed a high level of similarity among them, and the

Chao1 species richness estimator indicated the presence of only

two OTUs in the library, which confirms paralogy, as discussed by

Nováková et al. [55]. Moreover, the Arsenophonus OTUs from the

P. megistus and T. infestans libraries showed a high level of similarity

to the Arsenophonus accession in GenBank previously isolated from

Triatoma melanosoma [59].

When Candidatus Rohrkolberia cinguli was reported for the first

time in Chilacis typhae, a 1.5 kb segment of the eubacterial 16S

rRNA gene was amplified by PCR from DNA samples from the

midgut epithelium of the hemipteran species Chilacis typhae (52

individuals were used for PCR), then cloned and typed by RFLP.

All RFLP types of 40 clones were identical. Furthermore, when a

1.65 kb segment of the gammaproteobacteria groEL gene was

amplified, cloned and sequenced, the RFLP types and sequences

of the clones were all the same [34], indicating that the Rohrkolberia

population is prevalent and well adapted to the host.

Some sequences belonging to the same Rohrkolberia OTU cluster

in D. maxima were also found in R. prolixus, demonstrating that

Candidatus Rohrkolberia is not restricted to one insect genus. In fact,

to our knowledge, this is the first time that Candidatus Rohrkolberia

has been reported in triatomine guts, and this species, together

with Arsenophonus and Wolbachia, the other symbionts found in this

study, deserve more attention with respect to paratransgenic

strategies.

Interestingly, Wolbachia, which is a symbiont that can be

transmitted together with Arsenophonus [57] by parasitoid wasps of

the genus Nasonia [56], has been found in a Rhodnius specimen from

the Amazon. Wolbachia has been described in several organs and

feces of Rhodnius pallescens by Espino et al. [33]. These symbionts

belong to a-Proteobacteria and can cause postzygotic reproductive

incompatibilities in insects, as they display a tropism for the

reproductive tissues of their hosts and are transmitted vertically

from insect to insect through ovules or horizontally through

parasitoids. Despite the fact that infected insects do not show

pathological signs, the presence of Wolbachia can result in diverse

reproductive alterations in their hosts, including parthenogenesis,

feminization, male killing and unidirectional or bidirectional

cytoplasmic incompatibility. The relationship between Wolbachia

and their arthropod hosts ranges from mutualistic to parasitic

depending on the Wolbachia strain and arthropod species [33].

Introduction of a Wolbachia wMel strain isolated from Drosophila

melanogaster to an adult vector of Aedes aegypti allowed successful

suppression of dengue transmission in two natural populations of

A. aegypti within only a few months [60–62].

The reduced number of sylvatic samples analyzed in the present

study does not permit us to reach a definitive conclusion regarding

variations in microbiota between insectary and sylvatic individuals

of Rhodnius. However, some differences were observed between the

Figure 3. Maximum likelihood phylogenetic tree of a 16S rDNA library of D. maximus (Dm) gut microbiota. The 25 sequences (D in the
phylogenetic tree) were obtained from insectary individuals (FIOCRUZ/IOC) and compared with GeneBank sequences. The percent values on
branches are based on 1,000 bootstrap replicates. The a ellipse represents an OTU0.03 cluster obtained with MOTHUR that is shared by D. maximus
and R. polixus.
doi:10.1371/journal.pntd.0001631.g003
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Figure 4. Maximum likelihood phylogenetic tree of a 16S rDNA library of R. polixus (Rp) gut microbiota. The 26 sequences (R in the
phylogenetic tree) were obtained from insectary individuals (FIOCRUZ/IOC) and compared with GeneBank sequences. The percent values on
branches are based on 1,000 bootstrap replicates. The ellipses represent OTU0.03 clusters obtained with MOTHUR. The a ellipse represents an OTU0.03

cluster shared by D. maximus and R. polixus. The d ellipse represents an OTU0.03 cluster shared by R. polixus and T. infestans.
doi:10.1371/journal.pntd.0001631.g004
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Figure 5. Maximum likelihood phylogenetic tree of a 16S rDNA library of T. infestans (Ti) gut microbiota. The 24 sequences (T in the
phylogenetic tree) were obtained from insectary individuals (FIOCRUZ/IOC) and compared with GeneBank sequences. The percent values on
branches are based on 1,000 bootstrap replicates. The ellipses represent OTU0.03 clusters obtained with MOTHUR. The c and b ellipses represent
OTUs0.03 clusters shared by T. infestans and P. megistus. The d ellipse represents an OTU0.03 cluster shared by T. infestans and R. polixus.
doi:10.1371/journal.pntd.0001631.g005
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Figure 6. Maximum likelihood phylogenetic tree of a 16S rDNA library of P. megistus (Pm) gut microbiota. The 26 sequences (P in the
phylogenetic tree) were obtained from insectary individuals (FIOCRUZ/IOC) and compared with GeneBank sequences. The percent values on
branches are based on 1,000 bootstrap replicates. The ellipses represent OTU0.03 clusters obtained with MOTHUR. The c and b ellipses represent
OTUs0.03 clusters shared by P. megistus and T. infestans.
doi:10.1371/journal.pntd.0001631.g006
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prevalent populations of bacteria, including Wolbachia, although

only seven individuals of sylvatic Rhodnius sp. were analyzed.

If DGGE profiles show that the complexity of predominant

bacterial species of the Rhodnius gut microbiota is apparently low,

exhaustive cloning and sequencing will be necessary to reveal

bacterial species with a relative minor number in the microbiota

analyzed. The present pilot investigation should be used as a basis

for future analyses with other specific focuses that would require a

more refined approach, such as high-throughput sequencing.

Rhodnius has long served as an important physiological

laboratory model. Since Wigglesworth’s pioneering work [63] on

molting and reproduction, a large body of knowledge has been

accumulated worldwide. Ultimately, it has been proposed that

protozoan parasites inside the guts of vectors should be killed by

infecting triatomines under natural conditions with paratransgenic

bacteria that are able to produce antimicrobial factors [11,64,65].

However, this strategy, known as paratransgenesis [64], should

take into consideration potential interactions with the intestinal

microbiota under natural conditions. As shown above, the

composition of the gut microbiota varies according to the species

of insect vector and includes Serratia, Arsenophonus, Rohrkolberia or

Wolbachia populations, which could affect the success of para-

transgenic approaches over time and, thus, long-term host

protection. Possible degradation or bioaccumulation of paratrans-

genic factors by natural microbiota is another matter of concern.

Finally, the long-term effect of paratransgenic factors on the

mechanisms through which symbiotic microbes can influence the

ability of their host to transmit pathogens may be questioned

[38,42,43].
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