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Abstract
The development of an effective immune response can help decrease mortality from

malaria and its clinical symptoms. However, this mechanism is complex and has significant

inter-individual variation, most likely owing to the genetic contribution of the human host.

Therefore, this study aimed to investigate the influence of polymorphisms in genes involved

in the costimulation of B-lymphocytes in the naturally acquired humoral immune response

against proteins of the asexual stage of Plasmodium vivax. A total of 319 individuals living in

an area of malaria transmission in the Brazilian Amazon were genotyped for four SNPs in

the genes CD40, CD40L, BLYS and CD86. In addition, IgG antibodies against P. vivax api-
cal membrane antigen 1 (PvAMA–1), Duffy binding protein (PvDBP) and merozoite surface

protein 1 (PvMSP–119) were detected by ELISA. The SNP BLYS –871C>T was associated

with the frequency of IgG responders to PvAMA–1 and PvMSP–119. The SNP CD40 –1C>T

was associated with the IgG response against PvDBP, whereas IgG antibody titers against

PvMSP–119 were influenced by the polymorphism CD86 +1057G>A. These data may help

to elucidate the immunological aspects of vivax malaria and consequently assist in the

design of malaria vaccines.
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Introduction
Plasmodium vivax is the most prevalent species outside Africa, and P. vivax infections are
responsible for the high morbidity observed in affected populations despite the lower lethality
compared with infections caused by P. falciparum [1]. In endemic areas for malaria, particu-
larly where the transmission rate is high, as age and exposure increase, subjects tend to become
less susceptible to malaria episodes due to the development of an effective immune response
against the parasite [2]. The role of antibodies in protection against malaria is well docu-
mented, and the passive transfer of antibodies from the serum of immune individuals to
patients infected with P. falciparum effectively controls blood-stage parasites and reduces the
clinical signs of the disease [3, 4]. Therefore, the development of a vaccine capable of providing
protection against the blood stages of the malaria parasite will greatly decrease the clinical and
economic burden of the disease.

The blood stage proteins of Plasmodium considered to be the main candidate targets for
vaccine development include merozoite surface protein 1 (MSP–1), Duffy binding protein
(DBP), and apical membrane antigen 1 (AMA–1). After two successive cleavages, only a 19
kDa C-terminal portion of MSP–1 (MSP–119) remains anchored to the surface of merozoites
during erythrocyte invasion, and it is believed that MSP–119 is involved in the initial adhesion
of merozoites to erythrocytes [5]. AMA–1 is an integral membrane protein that is essential for
the reorientation of merozoites prior to erythrocyte invasion [5]. Furthermore, the binding of
AMA–1 to rhoptry neck protein (RON2) is an important step in the formation of the junction
complex during invasion [6]. In P. vivax, the binding of DBP to its receptor Duffy antigen
receptor for chemokines (DARC) plays an important role in the binding of merozoites of this
species to host reticulocytes [7]. Antibodies directed against these proteins have been shown to
inhibit the binding of these proteins and prevent the invasion of erythrocytes by merozoites
[8–11]. In addition, some longitudinal studies have associated AMA–1 and MSP–119 antibod-
ies with a decreased risk of malaria [12,13].

B cells require two types of signals to become activated and produce antibodies. The first sig-
nal is provided by antigen binding to the B cell receptor (BCR). Activated T cells generally pro-
vide the second signal for B cell activation through a variety of proteins. The CD40 protein is a
member of the tumor necrosis factor (TNF) receptor family, which are expressed on the surface
of a wide variety of cells, including B cells. The binding of CD40 to its ligand CD40L expressed
on the surface of activated T cells provides the major costimulatory signal for B cells to mount a
humoral response [14]. The interaction mediated by this signaling pathway is responsible for B
cell proliferation and differentiation, immunoglobulin isotype switching, and antibody secretion
[15,16]. Upon B cell activation, the expression of the CD86 molecule increases. In addition to
the important role of this molecule in T cell activation, the binding of CD86 to its receptor,
CD28, provides bidirectional signals that appear to be important for IgG production in B cells
[17]. B-lymphocyte stimulator (BLyS) is a member of the TNF family present on the surface of
many cells, including monocytes, macrophages, and activated T cells, or it can occur in a soluble
form. Its main function is to provide signals for B cell survival and proliferation [18].

It is known that the genetic component of the host plays an important role in the develop-
ment of an immune response against malaria [19]. The role of gene polymorphisms in the
immune system in the production of naturally acquired antibodies has been documented in P.
falciparum [20–27]. However, few studies have assessed the genetic mechanisms involved in
the production of antibodies against P. vivax proteins [28–31]. Thus, this study aimed to evalu-
ate the effects of single nucleotide polymorphisms (SNPs) in the genes CD40, CD40L, CD86
and BLYS on the production of IgG antibodies against candidate vaccine proteins from P.
vivax in a naturally exposed population in the Brazilian Amazon.

B Cell Co-Stimulatory Polymorphisms and Malaria

PLOS ONE | DOI:10.1371/journal.pone.0149581 February 22, 2016 2 / 15

Competing Interests: Luzia H. Carvalho is a PLOS
ONE Editorial Board member.



Materials and Methods

Study area and population sample
The study was conducted in the municipality of Goianésia do Pará (03°50'33 "S, 49°05'49" W),
approximately 300 km from the city of Belém, capital of the state of Pará, in the Brazilian Ama-
zon region. The climate is tropical semi-humid, with an average annual temperature of 26.3°C
and average annual rainfall of approximately 2,000 mm3.

In this municipality, despite the seasonal rainfall pattern characterized by a dry season
between June and November and a rainy season between December and May, malaria trans-
mission is unstable and occurs throughout the year. The annual parasite incidence rates in
2011 and 2012 were 99 and 39 per 1,000 inhabitants, respectively. More than 80% of malaria
cases are due to P. vivax, and the main vector in the region is Anopheles darlingi (Primo,
unpublished data).

Samples were collected at the municipal health center between February 2011 to August
2012, and 223 individuals infected with P. vivax with classic symptoms of malaria who sought
the malaria diagnostic service were recruited. In addition, 96 uninfected individuals who
sought medical care offered during the study were invited to participate in the study. These
participants had no close kinship and, therefore, were genetically unrelated, which was evi-
denced by a demographic questionnaire. Samples from 40 malaria-naive individuals residing
in a non-endemic area (São José do Rio Preto, Brazil) and who never visited malaria transmis-
sion areas were used as controls.

Blood sample collection and malaria diagnosis
After applying a questionnaire to assess demographic and epidemiological data, blood was col-
lected in EDTA-containing test tubes, after which plasma samples were separated by centrifu-
gation and stored at –20°C. Malaria was diagnosed using thick smears stained with Giemsa
according to the malaria diagnosis guidelines of the Brazilian Ministry of Health. Subsequently,
all participants (including the non-infected) had their diagnoses confirmed by nested–poly-
merase chain reaction (PCR) [32]. All participants or their guardians signed an informed con-
sent form. The project was approved by the health authorities of Goianésia do Pará and by the
Research Ethics Committee of the College of Medicine of São José do Rio Preto (CEP/FAMERP
No. 4599/2011).

Genotyping of the genes CD86, CD40L, CD40, and BLYS
DNA was extracted from peripheral blood samples using the Easy-DNA™ extraction kit (Invi-
trogen, California, USA). The following SNPs were identified using PCR–restriction fragment
length polymorphism (RFLP): +1057G>A in CD86 (rs1129055), –726T>C in CD40L
(rs3092945), –1C>T in CD40 (rs1883832), and –871C>T in BLYS (rs9514828). To amplify the
polymorphisms in CD40 and CD40L, the protocol described by Malheiros and Petz-Erler [33]
was used with modifications, and amplification of the polymorphisms in CD86 and BLYS fol-
lowed the protocol described by Cassiano et al. [34]. Briefly, all PCR reactions were performed
in a final volume of 25 μL containing 1× Buffer (20 mM Tris-HCl, 50 mM KCl, pH 8.4), 1.5
mMMgCl2, 0.2 mM of each dNTP, 0.4 pmol of each primer, and 0.5 U of Platinum Taq DNA
Polymerase (Invitrogen, São Paulo, Brazil). Amplification was performed under the following
reaction conditions: an initial step of 5 min at 94°C, 35 cycles of 30 s at 94°C, 30 s at 56°C
(except for the SNP in gene BLYS, where the annealing temperature was 50°C) followed by 1
min at 72°C, and a final step of 10 min at 72°C. The amplification products were digested
using restriction enzymes (Fermentas, Vilnius, Lithuania) according to the manufacturer's
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recommendations. Primer sequences and their restriction enzymes, and the restriction frag-
ments obtained after digestion of each polymorphism are presented in S1 Table.

Antigens
Three recombinant P. vivax proteins were used in this study. PvMSP–119, corresponding to
amino acids 1616–1704 of MSP–1 protein from the Belém strain, was expressed in Escherichia
coli with a polyhistidine affinity tag (6xHis tag) [35]. A gene coding for a recombinant protein
corresponding to amino acids 43–487 of the ectodomain of PvAMA–1 was synthesized by
GenScript USA Inc. (Piscataway, NJ) and expressed in Pichia pastoris [11]. Region II of DBP of
P. vivax strain Sal1 (PvDBP), which includes amino acids 243–573, was expressed in E. coli as a
6xHis fusion protein [36].

Antibody assays
The assessment of IgG antibodies against P. vivax recombinant proteins was performed as
described previously [11, 35, 36]. Briefly, the concentrations used for PvMSP–119, PvAMA–1,
and PvDBP were 2 μg/mL, 2 μg/mL, and 3 μg/mL, respectively. All plasma samples were
diluted at 1:100 and added in duplicate. Monoclonal antibody binding was detected using per-
oxidase conjugated anti-human immunoglobulin (Sigma, St Louis, USA). The results for total
IgG are expressed as reactivity index (RI), which was calculated by dividing the optical density
(OD) of the sample by the cut-off value, which in turn was calculated by averaging the OD val-
ues of the 40 plasma samples from the control subjects residing in the non-endemic area plus
three standard deviations. Individuals with RI> 1 (also known as responders) were considered
positive.

Estimates of interethnic admixture
The population of northern Brazil is highly mixed and formed mainly by crosses between
Europeans, Africans, and Native Americans. To avoid spurious interpretations resulting from
population substructure, we used a panel of 48 ancestry informative markers (AIMs) to esti-
mate the proportion of individual interethnic admixture in our sample, following a previously
described protocol [37]. The Structure software version 2.3.4 was used, and three parental pop-
ulations (European, African, and Native Americans) were assumed as described by Santos et al.
[37]. These estimates were used as covariates in the multivariate analyses to adjust for popula-
tion stratification.

Statistical analysis
Statistical analysis was performed using the SNPassoc R package (R software version 3.1.1)
[38]. Genotypic deviations from Hardy-Weinberg equilibrium were assessed using the exact
test described by Wigginton et al. [39]. For univariate analysis, differences in proportions were
assessed using the chi-square test, and differences between means were assessed using Student's
t-test or Mann-Whitney U-test, depending on whether the data were parametric. The correla-
tion between IgG antibody titers against PvAMA–1, PvDBP, and PvMSP-119 was assessed
using the Spearman correlation coefficient. The analysis of association between the SNPs and
the antibody responses frequency used a logistic regression model, and the factors significantly
associated with the antibody responses in the univariate analysis (gender, previous history of
malaria infection, and current infection) were included as covariates. Similarly, generalized lin-
ear regression was used to assess associations between the SNPs and the magnitude of the IgG
antibody responses. In all the multivariate analyses, SNPs were included following different
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genetic models: dominant (11 vs 12 + 22), recessive (11 + 12 vs 22), and log-additive (0, 1, 2
alleles). Values of p<0.05 were considered significant.

Results

Population profile
The profile of the study population is summarized in Table 1. The age of the study population
varied between 14 and 68 years (median of 30 years) and the male/female sex ratio was 1.47.
The period of residence in the study area varied between 0 (newly arrived migrants) to 37 years
(median of 7 years). The exact period of time for which individuals had been continuously
exposed to malaria could not be reliably determined because of the high rates of migration
characteristic of the Brazilian Amazon population. As previously reported by Cassiano et al.
[34], the population of Goianésia do Pará is highly mixed, showing a higher proportion of
European genetic ancestry (44%) and significant contributions of African (31.4%) and Native
American ancestry (24.6%). Most participants (78.7%) reported having had previous malaria
infections, and at the time of blood collection, 69.9% (223/319) were infected with P. vivax
(diagnosed by thick smear). Further analysis by nested PCR indicated that 13 of the 223
infected individuals (5.8%) were infected with both P. falciparum and P. vivax, and no individ-
ual diagnosed as negative by thick smear was positive by nested PCR.

Naturally acquired IgG antibodies against blood-stage proteins of P.
vivax
Of the 319 participants, 296 (92.8%) had their plasma samples evaluated for IgG against
PvAMA–1, 284 (89.0%) were evaluated for IgG against PvDBP, and 291 (91.2%) were evalu-
ated for IgG against PvMSP–119, which reflects the differences shown in Table 1 regarding the
total number of individuals. In addition, 69.1% (202/291) of the participants had antibodies
(RI> 1) against PvMSP–119, 63.4% (180/284) had antibodies against PvDBP, and 55.4%
(164/296) had antibodies against PvAMA–1. Among the subjects evaluated for the three pro-
teins, 80% (223/279) had antibodies against at least one protein and 46.2% (129/279) showed
responses against all three proteins. Significant positive correlations were observed between the
IgG antibody titers against PvAMA–1 and PvMSP–119, between PvAMA-1 and PvDBP, and
between PvDBP and PvMSP–119 (r = 0.72, 0.68, and 0.51, respectively, using Spearman correla-
tion, p< 0.0001).

We assessed whether the frequency of individuals with antibodies against the proteins studied
was correlated with any demographic or epidemiological variables (Table 1). The genetic ances-
try proportions did not differ between subjects with or without antibodies (all p values> 0.34).
Furthermore, no association was observed between the period of residence in the study area and
the antibody response. However, a higher frequency of responders to all the proteins evaluated
was observed among male subjects (p< 0.001). A higher proportion of individuals who had
never contracted malaria was observed among those without antibodies (p< 0.0001) regardless
of the protein evaluated. Furthermore, as expected, individuals who were infected at the time
of blood collection showed a higher frequency of responses to all three proteins evaluated
(p< 0.0001).

Associations of B-cell co-stimulatory gene polymorphisms with the
frequency of IgG responses against PvAMA-1, PvDBP, and PvMSP–119
Polymorphisms in the genes studied were successfully genotyped in all samples, except for SNP
rs1883832 in the CD40 gene, which was not identified in two samples. No significant deviation
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from Hardy-Weinberg equilibrium was observed for any polymorphism (all p values> 0.06).
The minor allele frequencies (MAF) were as follows: 0.249 for SNP rs9514828 in the BLYS
gene (allele T), 0.216 for SNP rs1129055 in the CD86 gene (allele A), 0.155 for SNP rs1883832
in the CD40 gene (allele T), and 0.112 for SNP rs3092945 in the CD40L gene (allele C) (S2
Table). These allele frequencies were similar to those found in a previously analyzed subset of
these samples [34].

The effects of polymorphisms in the BLYS, CD86, CD40, and CD40L genes on the IgG anti-
body responses against the proteins PvAMA–1, PvDBP, and PvMSP–119 are shown in Table 2
and S3 Table. The additive, recessive, and dominant genetic models were tested for each SNP.
With regard to PvAMA–1, the IgG antibody response was positively correlated with the pres-
ence of the T allele for SNP rs9514828 in the BLYS gene based on an additive model
(OR = 1.59, 95% CI: 1.05–2.40; p = 0.03). The T allele for SNP rs1883832 in the CD40 gene also
followed an additive model and was negatively correlated with the IgG antibody response
against PvDBP (OR = 0.57; 95% CI: 0.35–0.92, p = 0.02). Considering a dominant model, there
was a greater likelihood for individuals harboring the T allele in genotypes TT and TC of SNP
rs9514828 in the BLYS gene to have antibodies against PvMSP–119 compared with individuals
who harbored the CC genotype (OR = 2.01; CI: 1.12–3.61, p = 0.01). An analysis of interactions
between the polymorphisms produced no additional information beyond the information
obtained by the individual analysis of the polymorphisms (data not shown). In addition, we
evaluated the distribution of genotypes/alleles according to the number of proteins for which
individuals had antibodies, i.e., whether they responded against one, two, three, or no proteins

Table 1. Summary of the epidemiological data and seropositivity of the study population.

PvAMA-1 PvDBP PvMSP-119

Characteristics All
individuals

(319)a

Positive
(164)a

Negative
(132)a

pe Positive
(180)a

Negative
(104)a

pe Positive
(202)a

Negative
(89)a

pe

Gender, male (%) 59.6 68.3 47.7 0.0004 64.8 47.1 0.0004 66.8 40.4 <0.0001

Age, median years
(range)

30 (14–68) 30.5
(14–68)

29 (14–66) 0.52 29 (14–68) 30.5
(14–66)

0.63 30 (14–68) 29 (15–65) 0.37

Time of
residenceb,
median years
(range)

7 (0.1–37) 6.0
(0.1–37)

8.5
(0.1–37)

0.06 6.5
(0.1–37)

8.0
(0.1–37)

0.16 6.5
(0.1–37)

8.5
(0.1–37)

0.15

Genetic ancestryc,
mean ± SD (%)

African 31.4 ± 11.0 31.3 ± 11.6 31.9 ± 10.3 0.66 31.6 ± 11.1 31.8 ± 11.3 0.92 31.6 ± 11.4 30.6 ± 9.7 0.55

European 44.0 ± 11.9 44.0 ± 11.9 43.8 ± 12.6 0.91 44.1 ± 11.8 43.6 ± 13.2 0.76 43.6 ± 12.4 45.3 ± 11.6 0.34

Native American 24.6 ± 9.4 24.6 ± 9.7 24.2 ± 9.1 0.70 24.3 ± 9.5 24.6 ± 9.5 0.77 24.8 ± 9.4 24.1 ± 9.5 0.60

Previous malaria
infectiond (%)

78.7 95.0 55.9 <0.0001 92.0 52.2 <0.0001 90.1 49.4 <0.0001

Individuals infected
with P. vivax (%)

69.9 81.7 50.0 <0.0001 78.9 44.2 <0.0001 80.2 37.1 <0.0001

aNumber of individuals. The differences in the total number of individuals evaluated for each protein corresponding to samples that lacked plasma.
bTime of residence in Goianésia do Pará.
cData of genetic ancestry obtained from 273 individuals.
dProportion of individuals who contracted malaria in the past.
eP-values were calculated from a chi-squared test for qualitative variables, the Mann-Whitney test for nonparametric continuous variables and Student’s t-

test for parametric continuous variables.

doi:10.1371/journal.pone.0149581.t001
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(Fig 1). It was observed that the frequency of carriers of the T allele of SNP rs1883832 in the
CD40 gene progressively decreased as the antibody response increased (χ2 = 9.01; p = 0.002,
Chi-squared for trends). In addition, the presence of allele T from SNP rs9514828 in gene
BLYS was higher among the individuals who responded against all proteins tested (χ2 = 25.30;
p< 0.0001, Chi-square for trends).

Associations of polymorphisms with IgG antibody titers against PvAMA–
1, PvDBP, and PvMSP–119
We evaluated the effects of the polymorphism on IgG antibody titers against the three P. vivax
proteins. The variables that affected antibody titers, corresponding to the same variables associ-
ated with response frequency (gender, past history of malaria infection, and current infection)
(S4 Table), were included in the multivariate analysis together with the polymorphisms. There
was no significant effect of any genotype/allele investigated on the antibody titers (Fig 2). How-
ever, when individuals with or without a P. vivax infection at the time of blood collection were
analyzed separately, a significant increase in IgG antibody titers against PvMSP–119 was
observed among infected individuals harboring genotype AA of the CD86 polymorphism com-
pared to those harboring the GG and GA genotypes (median [Q1–Q3]: 7.87 [4.74–8.40] vs.
5.05 [1.56–7.60]; p = 0.03).

Table 2. Associations between Polymorphisms and Antibody Responses against Blood-Stage Proteins of P. vivax.

PvAMA-1 PvDBP PvMSP-119

Gene SNP Model Genotype OR (95%CI)a pb OR (95%CI)a pb OR (95%CI)a pb

BLYS rs9514828 Dominant C/C 1.00 0.04 1.00 0.39 1.00 0.01

C/T–T/T 1.68 (1.01–2.79) 1.26 (0.74–2.14) 2.01 (1.12–3.61)

Recessive C/C–C/T 1.00 0.22 1.00 0.80 1.00 0.83

T/T 1.91 (0.65–5.57) 0.87 (0.30–2.51) 0.89 (0.29–2.74)

Log-Additive 0,1,2 1.59 (1.05–2.40) 0.03 1.14 (0.74–1.74) 0.56 1.47 (0.91–2.37) 0.11

CD86 rs1129055 Dominant G/G 1.00 0.85 1.00 0.45 1.00 0.22

G/A–A/A 0.95 (0.57–1.58) 1.23 (0.72–2.11) 0.70 (0.39–1.24)

Recessive G/G–G/A 1.00 0.61 1.00 0.17 1.00 0.31

A/A 1.32 (0.45–3.85) 2.19 (0.69–6.96) 1.84 (0.56–6.07)

Log-Additive 0,1,2 1.01 (0.67–1.52) 0.97 1.28 (0.83–1.97) 0.26 0.88 (0.56–1.38) 0.58

CD40 rs1883832 Dominant C/C 1.00 0.36 1.00 0.03 1.00 0.31

C/T–T/T 0.77 (0.44–1.35) 0.53 (0.30–0.94) 0.73 (0.39–1.35)

Recessive C/C–C/T 1.00 0.66 1.00 0.21 1.00 0.92

T/T 1.35 (0.35–5.27) 0.39 (0.09–1.66) 1.09 (0.23–5.13)

Log-Additive 0,1,2 0.87 (0.55–1.37) 0.54 0.57 (0.35–0.92) 0.02 0.81 (0.48–1.35) 0.42

CD40Lc rs3092945 Dominant T/T 1.00 0.63 1.00 0.36 1.00 0.70

T/C–C/C 1.24 (0.51–3.06) 1.54 (0.61–3.88) 0.83 (0.31–2.18)

Recessive T/T–T/C 1.00 0.70 1.00 0.60 1.00 0.92

C/C 1.46 (0.21–10.39) 0.59 (0.09–4.03) 0.89 (0.08–9.86)

Log-Additive 0,1,2 1.21 (0.59–2.48) 0.60 1.24 (0.58–2.64) 0.58 0.86 (0.38–1.94) 0.72

aOR stands for odd ratio and CI stands for confidence intervals.
bp values based on fitting logistic regression models adjusted for gender and current malaria infection. P values < 0.05 are in bold.
cGenotypes available only for women because the CD40L gene is located on chromosome X.

doi:10.1371/journal.pone.0149581.t002
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Fig 1. Positive antibody response and carrier frequency of mutant alleles. Frequency of carriers of mutant alleles of SNPs in genesCD40, BLYS, CD86,
andCD40L according to the number of proteins for which subjects were responders. Individuals with antibodies against the three proteins (n = 279) were
classified according to their reaction against zero (n = 57), one (n = 55), two (n = 38), or three (n = 129) proteins of blood-stage P. vivax.

doi:10.1371/journal.pone.0149581.g001

B Cell Co-Stimulatory Polymorphisms and Malaria

PLOS ONE | DOI:10.1371/journal.pone.0149581 February 22, 2016 8 / 15



Fig 2. BLYS,CD40,CD86, andCD40L genotypes in relation to antibody titers against the merozoite proteins. Antibody titers were expressed as log-
transformed reactivity indices (RI). For the SNP in the geneCD40L, men and women harboring the C allele were grouped and compared with individuals who
did not possess this allele given that CD40L is located on chromosome X. Multivariate logistic regression analysis found no significant differences in the
antibody titers between the different genotypes.

doi:10.1371/journal.pone.0149581.g002
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Discussion
The present study aimed to evaluate the effects of polymorphisms in co-stimulatory genes of B
cells on antibody responses against recombinant proteins of P. vivax in a population sample
from the Brazilian Amazon. Although the number of studies aimed at identifying genetic
mechanisms involved in regulating the production of antimalarial antibodies has increased in
recent years [20–31], the development of an effective vaccine will most likely require a thor-
ough understanding of the host–parasite relationship. Therefore, studies such as the one
reported herein will help to elucidate the responses of individuals to certain vaccine protein
candidates.

Importantly, in this study, potential biases due to population substructure were considered.
The frequencies of the alleles CD86 +1057A and CD40L –726T are higher among individuals
with higher proportions of European ancestry [34], and consequently, if individuals with anti-
bodies exhibited more European ancestry than non-responders, a false association between
these alleles and antibody production could be found. However, the fact that no differences
were observed in the proportion of genetic ancestry between the responders and non-respond-
ers for the three proteins studied and our inclusion of individual ancestry values as covariates
in the multivariate analyses precluded the possibility of false associations in our results.

Differences were observed in the frequency of responders against the three proteins evalu-
ated, and the proportion of responders against PvMSP–119 was the highest (69.1%), followed
by responders against PvDBP (63.4%), and those against PvAMA–1 (55.4%). The higher pro-
portion of responders against PvMSP–119 was an expected result considering that previous
studies have shown that this protein is highly immunogenic [40, 41], most likely owing to the
low degree of polymorphism found in the MSP–1 region [42], and also because MSP–119 is car-
ried into the infected cell, persists until the end of the intracellular cycle, accumulates in the
digestive vacuole, and is discarded together with digestion products, possibly increasing its
exposure to the immune system [43]. Both the frequency of individuals with antibodies and
the magnitude of the IgG response were significantly higher in individuals who had had previ-
ous episodes of malaria and/or who were infected at the time of blood collection, suggesting
the occurrence of a boosting effect in the antibody responses directed against these proteins
compared with individuals who never contracted malaria. In addition, it was noted that the
IgG response against the three proteins was higher in men than women. Although the reasons
for this result remain unclear [29], men are most likely more exposed to malaria transmission
from working for longer periods in the field compared to women.

The main result found in our study was that polymorphisms in the genes CD40 and BLYS
seem to influence the IgG antibody responses against PvAMA–1, PvDBP, and PvMSP–119 of
P. vivax in the population studied. Considering that the binding of CD40 to its ligand CD40L is
critical for the production of antibodies in B cells [14], it is possible that this molecule is
involved in the immune response against malaria. Indeed, this co-stimulatory pathway is
important for the production of IgG antibodies against P. falciparum proteins because PBMCs
from individuals living in holo- or meso-endemic malaria areas were found to produce more
antibodies in vitro when CD40L costimulation was provided [44]. In our study, the presence of
the T allele of SNP rs1883832 in the CD40 gene was negatively correlated with the production
of IgG antibodies against PvDBP. This polymorphism is located at position –1 of the start
codon and affects the Kozak sequence, which is crucial to the initiation of the protein transla-
tion process [45], and it is believed that the presence of the T allele can decrease gene expres-
sion by 15%–30% [46]. Whether the correlation between the SNP in the CD40 gene and the
production of IgG antibodies against PvDBP is associated with clinical immunity requires fur-
ther investigation. However, it is noteworthy that the frequency of the T allele is significantly
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lower in African populations than in European populations [47], and this frequency may sug-
gest a selective advantage of the C allele due to pressure exerted by malaria. However, in a case-
control study conducted in the city of Macapá in the Brazilian Amazon, no association was
found between polymorphism in the CD40 gene and susceptibility to vivax malaria [48]. This
same study evaluated the influence of BLYS, CD40, and CD40L polymorphisms on the anti-
body response against recombinant proteins of P. vivax in a subgroup whose serological results
were available, and the results indicated no correlation with antibody response. However, it is
of note that this subgroup consisted of approximately 50 individuals. Moreover, it remains pos-
sible that the conditions of malaria transmission and the genetic background of the populations
differ between the municipalities of Macapá and Goianésia do Pará, which could explain the
differences observed [48].

BLyS is a critical cytokine for B cell survival and differentiation; its serum levels were found
to be higher among children with acute malaria and were positively correlated with the levels
of IL-10 and IFN-γ [49]. A study conducted by Liu et al. [50] demonstrated that the production
of memory B cells in response to vaccination with MSP–119 from P. yoelli in mice was depen-
dent on the production of BLyS by dendritic cells (DCs). In our study, the presence of the T
allele of SNP rs9514828 in the BLYS gene was positively correlated with the production of IgG
antibodies against PvAMA–1 and PvMSP–119. This SNP is located in the promoter region of
the gene at position -871 relative to the start codon, corresponding to a binding site for the
transcription factor MZF1, and it can therefore modulate gene expression [51]. However, the
role of this SNP in gene expression has not been elucidated—some studies have associated the
T allele with higher levels of BLYSmRNA [51,52], whereas others have not established this
association [53].

It is of interest that the observed associations involving these two SNPs could not be extrap-
olated to the antibody response against all proteins tested, i.e., although SNP BLYS rs9514828
was associated with the response of IgG antibodies against PvAMA-1 and PvMSP-119, no asso-
ciation involving this SNP and PvDBP was found. Similarly, SNP CD40 rs1883832 was associ-
ated with PvDBP but not with PvAMA-1 and PvMSP-119. Although the reasons for these
results are unknown, they are likely to reflect intrinsic differences among these proteins,
including the degree of polymorphism, exposure to the immune system, and antigen presenta-
tion via HLA, among others. However, as shown in Fig 1, there was a higher frequency of allele
T carriers of SNP BLYS rs9514828 among those individuals who had antibodies against all
three proteins evaluated, whereas the frequency of allele T carriers of SNP CD40 rs1883832 was
lower among the responders of all proteins.

In addition, we found a correlation between SNP rs1129055 in the CD86 gene and the mag-
nitude of the IgG response against PvMSP-119, but only among individuals infected with P.
vivax. In murine models of malaria, the CD86 molecule seems to be involved in the differentia-
tion of the Th2-type response [54]. Furthermore, for gene CD28, which is the receptor of ligand
CD86, was observed a lower production of IgG antibodies against AMA-1 and MSP-1 when
CD28 knockout mice were infected with P. chabaudi [55]. In our study, we found that individu-
als infected with P. vivax harboring the AA genotype had the highest antibody titers against
PvMSP-119. The SNP rs1129055 is located in exon 8 of the gene and causes a non-silent substi-
tution of alanine for threonine at amino acid position 304 of the protein, introducing a poten-
tial phosphorylation site in the cytoplasmic region of the molecule [56]. Although the
functional implications of this polymorphism are not yet elucidated, we speculate that individ-
uals with the AA genotype infected with P. vivaxmay have a response directed more towards
the Th2-type, with increased production of antibodies, particularly against PvMSP-119.

In conclusion, we found evidence for the role of co-stimulatory B cell molecules in the
genetic control of the immune response against P. vivax. The identification of individual
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genetic traits that influence the development of an immune response may be important in the
development of vaccines against malaria. However, further investigations involving these genes
are necessary to confirm whether their effect on antibody production is associated with the
control of P. vivax infection.
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