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Kinetoplastid membrane protein-11 (KMP-11), a protein present in all kinetoplastid 
protozoa, is considered a potential candidate for a leishmaniasis vaccine. In Leishmania 
amazonensis, KMP-11 is expressed in promastigotes and amastigotes. In both stages, 
the protein was found in association with membrane structures at the cell surface, 
flagellar pocket, and intracellular vesicles. More importantly, its surface expression is 
higher in amastigotes than in promastigotes and increases during metacyclogenesis. 
The increased expression of KMP-11 in metacyclic promastigotes, and especially in 
amastigotes, indicates a role for this molecule in the parasite relationship with the mam-
malian host. In this connection, we have shown that addition of KMP-11 exacerbates 
L. amazonensis infection in peritoneal macrophages from BALB/c mice by increasing 
interleukin (IL)-10 secretion and arginase activity while reducing nitric oxide production. 
The doses of KMP-11, the IL-10 levels, and the intracellular amastigote loads were 
strongly, positively, and significantly correlated. The increase in parasite load induced 
by KMP-11 was inhibited by anti-KMP-11 or anti-IL-10-neutralizing antibodies, but not 
by isotype controls. The neutralizing antibodies, but not the isotype controls, were also 
able to significantly decrease the parasite load in macrophages cultured without the 
addition of KMP-11, demonstrating that KMP-11-induced exacerbation of the infection 
is not dependent on the addition of exogenous KMP-11 and that the protein naturally 
expressed by the parasite is able to promote it. All these data indicate that KMP-11 acts 
as a virulence factor in L. amazonensis infection.

Keywords: Leishmania, leishmaniasis, KMP-11, virulence factor, vaccine, Leishmania amazonensis, Leishmania 
braziliensis

THE LEISHMANIASES

Diversity is the key word for defining the leishmaniases, a group of diseases caused by the infec-
tion with parasitic protozoa of the genus Leishmania and transmitted by sandfly (Phlebotominae) 
vectors (1): diversity of parasite species, diversity of vector species, diversity of eco-epidemiological 
conditions involved in transmission, and diversity of clinical presentations. The leishmaniasis can be 
broadly classified as tegumentary (2), in which the parasitism is restricted to the integument (skin 
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or mucosa) and visceral leishmaniasis (VL), in which internal 
organs like spleen, liver, bone marrow, and lymph nodes are 
infected. The former can be further divided into cutaneous (CL), 
diffuse cutaneous (DCL), and mucosal (or mucocutaneous, ML) 
leishmaniasis (1), according to clinical and immunopathological 
patterns. CL is the primary clinical form in all cases. It can be 
caused by all the dermotropic Leishmania parasites and it is, by 
far, the most common presentation of tegumentary leishma-
niasis. ML and DCL are less frequent and more severe clinical 
forms, associated with distinct species and particular patterns of 
immune response. VL is caused by only two Leishmania species: 
Leishmania donovani and Leishmania infantum (3), but many 
species, belonging to two different subgenera (Leishmania and 
Viannia), can produce tegumentary leishmaniasis (1). While Old 
World CL is caused by three species, all of them of the Leishmania 
subgenus, American tegumentary leishmaniasis, so called because 
it encompasses CL, DCL, and ML, can be caused by various spe-
cies of the Leishmania and the Viannia subgenera, the latter been 
exclusive of the American continent. It is currently estimated an 
annual incidence of 0.2–0.4 and 0.7–1.2 million cases for VL and 
CL cases, respectively, with a tentative estimate of 20,000–40,000 
deaths per year due to VL. However, all these numbers are prob-
ably underestimated. Six countries (India, Bangladesh, Sudan, 
South Sudan, Ethiopia, and Brazil) account for more than 90% of 
global VL cases. CL has a wider geographical distribution, with 
the Americas, the Mediterranean basin, and western Asia being 
the most affected regions (4).

CONTROL OF LEISHMANIA INFECTION 
BY THE MAMMALIAN IMMUNE SYSTEM

There are two major morphological stages in the life cycle of 
Leishmania: the promastigote and the amastigote. The promas-
tigotes are the 15–20 μm long flagellated and motile forms found 
within the insect vectors, while the 3–5  μm long amastigotes, 
which lack the external flagellum, are found inside mononuclear 
phagocytic cells of the mammalian hosts (5).

The promastigotes undergo a differentiation process termed 
metacyclogenesis within the gut of the insect vector (6). Metacyclic 
promastigotes are the infective form for the mammalian host. 
They have been shown to be far more resistant to complement-
mediated lysis than the procyclic promastigotes, which divide 
attached to the vector’s midgut epithelial cells (7). After the 
inoculation of the infective promastigotes by the sandfly bite, the 
establishment of the intracellular infection depends on a number 
of factors: size of inoculum (8); the phlebotomine saliva, which 
contains immunomodulatory molecules (9); presence of apoptotic 
promastigotes (10), and, especially, the ability of the parasites to 
survive the innate immune response of the host, which includes, 
among other factors, complement-mediated lysis and opsoniza-
tion, phagocytosis by neutrophils and macrophages, Toll-like 
receptors, the NLRP3 inflammasome, and many cytokines and 
chemokines (11). The successful establishment of the infection 
results in the amastigotes dividing in phagolysosomes of mac-
rophages, where they inhibit or subvert the killing mechanisms of 
these cells, making them permissive to the infection (12).

At this point, the control of the infection will depend on the 
adaptive immune response. Th1 CD4+ cells induce the activa-
tion of the parasitized macrophages through the secretion of 
interferon-gamma (IFN-γ) (13), with the help of other proin-
flammatory cytokines, such as tumor necrosis factor-alpha (14), 
rendering these cells capable to kill the amastigotes by producing 
nitric oxide (NO) and/or reactive oxygen species (ROS) (15). The 
generation of an effective memory T-cell response is the goal of 
vaccination.

THE SEARCH FOR A VACCINE AGAINST 
LEISHMANIASIS

The transmission of pathogenic Leishmania species is character-
ized by a high degree of parasite-vector specificity (16) and ~30 
sandfly species are believed to be competent vectors (17). Each 
species has a particular ecology (18), which determines the trans-
mission conditions and the risk factors for acquiring the disease. 
This diversity makes the design of control strategies extremely 
difficult. Moreover, the current control measures directed toward 
vectors and animal reservoirs have not been reliably effective 
(19). As a result, the geographical distribution of leishmaniasis 
is expanding, even to urban areas (20). On the other hand, the 
currently used chemotherapy regimens are toxic and expensive. 
Most of them have to be used parenterally for long periods (21), 
making adherence to therapy difficult to achieve (22). In addi-
tion, resistance to standard therapy, as pentavalent antimonials, 
is becoming more frequent (23). Therefore, an effective and safe 
vaccine could be the most comprehensive and cost-effective tool 
for the prevention of leishmaniasis (24).

There is no effective vaccine against any form of human 
leishmaniasis (24). However, during the last four decades, there 
have been many approaches for the development of a vaccine 
against leishmaniasis. Most of them stopped at the experimental 
level. Only a few have reached clinical trials. The majority of 
these were the so-called first-generation vaccine (25) candidates, 
composed of killed promastigotes. A major advantage of these 
vaccines is that they could be manufactured at low technological 
level and relative low cost in endemic countries (25). However, 
standardization of vaccines derived from cultured parasites 
would be impossible. Furthermore, after the various clinical trials 
performed with these vaccines, their efficacy has not been clearly 
demonstrated (26). The second-generation vaccine candidates 
encompass a variety of approaches: recombinant proteins, DNA, 
and genetically engineered organisms, such as vectored vaccines 
and attenuated Leishmania. As a rule, recombinant DNA tech-
nology is involved in their production. Their main advantages 
relate to safety and standardization because in this kind of vac-
cine, the content is precisely known. The immunization strate-
gies mentioned above represent different modes of delivery of 
defined immunogens, which are, in general, parasite molecules. 
A number of them have been proposed as vaccine candidates, 
such as glycoprotein gp63, Leishmania homolog of receptors for 
activated C kinase (LACK), kinetoplastid membrane protein-11 
(KMP-11), histone H1, sterol 24-c-methyltranferase, amastigote-
specific protein A2, cysteine proteinases, nucleoside hydrolase, 
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thiol-specific antioxidant, Leishmania major stress-inducible 
protein 1, Leishmania elongation initiation factor, among others 
(27, 28). The latter three constitute a multi-subunit candidate vac-
cine, Leish-111F, the only recombinant candidate vaccine against 
leishmaniasis already tested in humans (27, 28), so far without 
evidence of efficacy.

KINETOPLASTID MEMBRANE 
PROTEIN-11 AS A VACCINE  
CANDIDATE

Kinetoplastid membrane protein-11 was discovered as a T cell-
reactive contaminant (29) in preparations of lipophosphoglycan, 
the most abundant macromolecule on the surface of the pro-
mastigote stage of Leishmania spp. (30). Since then, it has been 
considered as a promising candidate antigen for a vaccine against 
leishmaniasis. It has shown an immunoprotective effect in a 
variety of immunization protocols (31–34).

Kinetoplastid membrane protein-11 is a protein character-
istic and specific of kinetoplastid protozoa (35). The KMP-11 
coding genes and their products show a remarkably high degree 
of sequence homology among all Leishmania species of both 
subgenera. When KMP-11 gene sequences of L. (Viannia) 
panamensis, L. (Leishmania) infantum, and L. (L) donovani 
were compared, a homology of more than 95% was found 
among them, and only three amino acid changes were found 
when the corresponding deduced amino acid sequences were 
compared (36). On the other hand, this protein shows very 
low homology with human proteins (37). KMP-11 has a strong 
antigenicity for murine (31) and human T cells (38) and is capa-
ble of stimulating both innate (39) and adaptive (38) immune 
responses. All these are characteristics of an ideal leishmaniasis 
vaccine candidate.

Another fundamental aspect for a candidate antigen for 
a leishmaniasis vaccine is its expression in the amastigote, the 
infective stage for mammals. Concerning this subject, there 
are interesting reports on the variability of KMP-11 expression 
among different species of Leishmania. This protein was found to 
be expressed at higher levels in L. infantum promastigotes than 
in amastigotes (40, 41), whereas its expression is up-regulated 
in amastigotes of Leishmania amazonensis (42) and Leishmania 
mexicana (41). It is interesting to notice that these three species 
belong to the Leishmania subgenus. To our knowledge, a similar 
investigation on differential expression of KMP-11 in species 
belonging to the Viannia subgenus has never been performed. 
Recognizing this variability is necessary for the understanding 
of the diversity found in the infections with different Leishmania 
species with regard to host–parasite relationship and pathogen-
esis. Unfortunately, this aspect has been largely neglected in 
leishmaniasis research. It is possible that a molecule, which plays 
a key role in the infection with a given Leishmania species would 
have no relevance at all for another. In this sense, it is surprising 
that the genomes of species causing so diverse diseases in humans 
like L. major, L. infantum (both from the Leishmania subgenus) 
and Leishmania braziliensis (Viannia subgenus) contain <1% 
species-specific genes (43). A possible explanation for this 

unexpected finding is that, in spite of the high similarity in their 
genome sequences, important differences were found between 
different Leishmania species with regard to stage-regulated gene 
expression (44). These differences may represent the adaptation 
to different vector species or the development of different strate-
gies for survival in the mammalian host.

IMMUNOLOGICAL BASIS FOR 
VIRULENCE FACTORS AS VACCINES 
AGAINST LEISHMANIASIS

During several decades, a reductionist vision has oversimplified 
the understanding of immunopathology of the leishmaniases. 
This was based in conclusions drawn from the mouse model 
of L. major infection. In this model, there is an association of 
resistance or susceptibility to infection with the predominance 
of Th1 or Th2 CD4+ T cell-mediated responses, respectively (45). 
Although this model has contributed to demonstrate the key 
role played by IFN-γ and Th1 cells in the control of Leishmania 
infection, it has become clear that the resistance/susceptibility 
to other Leishmania species do not fit into the so-called Th1/
Th2 paradigm (46). Nevertheless, it has long guided the efforts 
of immunoparasitologists and vaccinologists toward the devel-
opment of an anti-Leishmania vaccine. During this period, the 
Th1/Th2 paradigm was the conceptual basis for the search of 
potentially protective candidate antigens for a vaccine against 
leishmaniasis. However, this strategy eventually proved to be 
ineffective. Leishmania antigens that stimulate a Th1 immune 
response during the disease or even after cure were not able to 
induce protection when used as vaccines. On the other hand, 
antigens associated with disease-promoting immune responses 
in the early infection have been found to be highly protective if a 
Th1 response to them is generated by vaccination before infection 
(47). Probably, the best example of this is the LACK antigen which 
stimulates a strong Th2 response soon after infection of BALB/c 
mice (48) that is responsible for their extreme susceptibility to 
this parasite (49). However, the same antigen, when administered 
with adjuvants that stimulate Th1 responses (50) or as a DNA 
vaccine (51) protects BALB/c mice from subsequent infections 
with L. major. During coevolution, parasites have learned how to 
manipulate the host immune system to their own advantage by 
developing particular ways of antigen presentation and delivery 
during infection. Based on accumulating evidence, it is reason-
able to believe that those evasion strategies can be overcome by 
defined immunization protocols using disease-promoting para-
site antigens. Thus, at present, virulence factors are considered as 
potential drug targets and vaccine candidates for the control of 
leishmaniasis (52) and other infectious diseases (53).

KINETOPLASTID MEMBRANE 
PROTEIN-11 AS A VIRULENCE FACTOR  
IN LEISHMANIA SPP.

It has been shown that KMP-11 is a potent inducer of interleu-
kin-10 (IL-10) production in peripheral blood mononuclear 
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cells from patients with American CL and it is also able to 
inhibit the IFN-γ response of these cells to soluble L. bra-
ziliensis antigen extract (54, 55). IL-10 is a cytokine with 
anti-inflammatory properties produced by T cells, B cells, 
macrophages/monocytes, and keratinocytes. It can inhibit 
the synthesis of proinflammatory cytokines and chemokines 
as well as the production of NO and ROS by macrophages 
(56–58), restraining their ability to kill intracellular organisms 
(59–62).

Mukhopadhyay et al. suggested that KMP-11 may play a role 
in the virulence of L. donovani promastigotes because the loss of 
infective power obtained by successive sub-culturing was associ-
ated with a down-regulation of its expression (63).

Moreover, the increased expression of KMP-11 in metacyclic 
promastigotes, and especially in amastigotes, indicates a role for 
this molecule in the parasite relationship with the mammalian 
host, at least in members of the L. mexicana complex (64): 
L. amazonensis (42) and L. mexicana (41).

All these observations have prompted us to investigate a 
possible role for KMP-11 as a virulence factor in Leishmania. 
By using an in  vitro model, we showed an exacerbating effect 
of KMP-11 on the infection of peritoneal macrophages from 
BALB/c mice with L. amazonensis, implicating this protein as 
a virulence factor for this species. This effect was higher when 
KMP-11 was added to the cultures 4 h after infection (and after 
the removal of the remaining extracellular promastigotes), as 
compared to simultaneously or 4  h before infection, demon-
strating that the infection-promoting effect of the protein was 
on amastigote proliferation rather than on the internalization of 
promastigotes. The increase in amastigote loads was associated 
to an increase in IL-10 secretion and arginase activity and to an 
inhibition of NO production. More importantly, anti KMP-11 
and anti-IL-10 antibodies were able to significantly decrease the 
parasite load in macrophages cultured without the addition of 
KMP-11, demonstrating that KMP-11-induced exacerbation 
of the infection is not dependent on the addition of exogenous 
KMP-11 and that the protein naturally expressed by the parasite 
is able to promote it (65).

It was recently demonstrated that poly(lactide-co-glycolide 
acid) nanoparticles loaded with KMP-11 induce of potent innate 
responses in BALB/c macrophages infected with L. braziliensis, 
promoting amastigote killing. These responses involve increased 
production of NO, superoxide, TNF-α and IL-6; release of 
CCL2/MCP-1 and CXCL1/KC; recruitment of macrophages and 
neutrophils in  vitro; activation of caspase-1 and the secretion 
of IL-1β and IL-18 (39). Interestingly, the recombinant protein 
alone did not show such an effect. In contrast to our work with 
L. amazonensis, which was performed with resident peritoneal 
macrophages (65), thioglycolate-activated macrophages were 
used in this study.

The results described obtained with soluble or PLGA-coupled 
KMP-11 in in  vitro infections of resident or thioglycolate-
activated BALB/c peritoneal macrophages infected with L. 
amazonensis or L. braziliensis pose interesting questions 
concerning antigen delivery, macrophage activation, and 

differences in patterns of host–parasite relationship between 
different Leishmania species.

Leishmania amazonensis or L. braziliensis belong to dif-
ferent subgenera, Leishmania and Viannia, respectively (66), 
which are thought to have diverged 90 million years ago, when 
South America and Africa separated (67). Thus, New World 
CL is a disease caused by parasites that are quite different 
from each other. From the human health point of view, one 
of their most significant differences is the way that species 
from different subgenera interact with the mammalian host 
immunity (66).

Leishmania amazonensis and other members of the L. mexi-
cana complex possess a remarkable ability to subvert or modulate 
innate and adaptive immune responses of the vertebrate host 
(68, 69). As a result of this, these parasites cause non-healing 
cutaneous lesions in most inbred strains of mice (68), although 
differences in susceptibility can be observed among them (69). In 
humans, L. amazonensis and L. mexicana are responsible for DCL, 
the only incurable form of human leishmaniasis, characterized by 
complete absence of specific type 1 response (proinflammatory, 
parasiticidal) to leishmanial antigens and unrestrained parasite 
growth (70).

Leishmania braziliensis and other species of the Viannia sub-
genus are not as able as the species of the L. mexicana complex 
to suppress proinflammatory and parasiticidal type 1 responses. 
Instead, the disease occurs in presence of an established Th1 
response and IFN-γ production. Nevertheless, this response has 
some inhibitory effect on parasite growth. That is why parasites 
are less numerous in cutaneous lesions caused by L. braziliensis 
than in those produced by infection with L. amazonensis (66). 
The severe clinical form resulting from L. braziliensis is ML, 
which is associated with up-regulated Th1 responses (71). L. 
braziliensis is much less pathogenic for mice than L. amazonensis. 
Experimental infection with L. braziliensis can only be achieved 
in the BALB/c strain (72, 73).

CONCLUSION AND PERSPECTIVES

The presented data indicate that KMP-11 can act as a virulence 
factor for L. amazonensis, although this may not be the case for 
other Leishmania species. Future research on this subject should 
include the demonstration of an in  vivo disease-exacerbating 
effect of KMP-11 in leishmanial infection and the evaluation 
of the role played by this molecule in the infection with other 
Leishmania species.
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